Azpilicueta Fernández de las Heras, Leyre
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Azpilicueta Fernández de las Heras
First Name
Leyre
person.page.departamento
Ingeniería Eléctrica, Electrónica y de Comunicación
person.page.instituteName
ISC. Institute of Smart Cities
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
34 results
Search Results
Now showing 1 - 10 of 34
Publication Open Access Implementation of context aware e-health environments based on social sensor networks(MDPI, 2016) Aguirre Gallego, Erik; Led Ramos, Santiago; López Iturri, Peio; Azpilicueta Fernández de las Heras, Leyre; Serrano Arriezu, Luis Javier; Falcone Lanas, Francisco; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Gobierno de Navarra / Nafarroako GobernuaIn this work, context aware scenarios applied to e-Health and m-Health in the framework of typical households (urban and rural) by means of deploying Social Sensors will be described. Interaction with end-users and social/medical staff is achieved using a multi-signal input/output device, capable of sensing and transmitting environmental, biomedical or activity signals and information with the aid of a combined Bluetooth and Mobile system platform. The devices, which play the role of Social Sensors, are implemented and tested in order to guarantee adequate service levels in terms of multiple signal processing tasks as well as robustness in relation with the use wireless transceivers and channel variability. Initial tests within a Living Lab environment have been performed in order to validate overall system operation. The results obtained show good acceptance of the proposed system both by end users as well as by medical and social staff, increasing interaction, reducing overall response time and social inclusion levels, with a compact and moderate cost solution that can readily be largely deployed.Publication Open Access Analysis and description of HOLTIN service provision for AECG monitoring in complex indoor environments(MDPI, 2013) Led Ramos, Santiago; Azpilicueta Fernández de las Heras, Leyre; Aguirre Gallego, Erik; Martínez de Espronceda Cámara, Miguel; Serrano Arriezu, Luis Javier; Falcone Lanas, Francisco; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta ElektronikoaIn this work, a novel ambulatory ECG monitoring device developed in-house called HOLTIN is analyzed when operating in complex indoor scenarios. The HOLTIN system is described, from the technological platform level to its functional model. In addition, by using in-house 3D ray launching simulation code, the wireless channel behavior, which enables ubiquitous operation, is performed. The effect of human body presence is taken into account by a novel simplified model embedded within the 3D Ray Launching code. Simulation as well as measurement results are presented, showing good agreement. These results may aid in the adequate deployment of this novel device to automate conventional medical processes, increasing the coverage radius and optimizing energy consumption.Publication Open Access Spatial characterization of personal RF-EMF exposure in public transportation buses(IEEE, 2019) Celaya Echarri, Mikel; Azpilicueta Fernández de las Heras, Leyre; López Iturri, Peio; Aguirre Gallego, Erik; Miguel Bilbao, Silvia de; Ramos, Victoria; Falcone Lanas, Francisco; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute of Smart Cities - ISC; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio IngeniaritzarenNew services and applications within vehicular environments employ multiple wireless communication systems, within a Heterogeneous Network framework. In this context, evaluation of electromagnetic field impact is compulsory, in order to warrant compliance with current exposure limits. In this work, E-field strength distribution within urban transportation buses is studied, in which different types of buses as well as network configurations are considered. E-field estimations are obtained within the complete interior volume of the urban buses, considering all of the characteristics in terms of bus structure and materials employed, by means of an in-house developed deterministic 3D Ray-Launching (3D-RL) code. In this way, relevant phenomena in terms of electromagnetic propagation and interaction are considered, such as multipath propagation and shadowing, which determine exposure levels as a function of transceiver location within the bus scenarios. The behavior in terms of E-field distribution of wireless Public Land Mobile communication systems within transportation buses have been analyzed by means of measurement campaigns employing personal exposimeter devices. In addition, E-field volumetric distributions by means of 3D-RL simulations have been obtained as a function of user distribution within the buses, with the aim of analyzing the impact of user presence within complex intra-vehicular indoor scenarios such as urban transportation buses. A comparison with current exposure limits given by currently adopted standards is obtained, showing that E-field levels were below the aforementioned limits. The use of deterministic simulation techniques based on 3D-RL enables E-field exposure analysis in complex indoor scenarios, offering an optimized balance between accuracy and computational cost. These results and the proposed simulation methodology, can aid in an adequate assessment of human exposure to non-ionizing radiofrequency fields in public transportation buses, considering the impact of the morphology and the topology of vehicles, for current as well as for future wireless technologies and exposure limits.Publication Open Access Performance analysis of ZigBee wireless networks for AAL through hybrid ray launching and collaborative filtering(Hindawi, 2016) López Iturri, Peio; Casino, Fran; Aguirre Gallego, Erik; Azpilicueta Fernández de las Heras, Leyre; Falcone Lanas, Francisco; Solanas, Agustí; Ingeniaritza Elektrikoa eta Elektronikoa; Institute of Smart Cities - ISC; Ingeniería Eléctrica y ElectrónicaThis paper presents a novel hybrid simulation method based on the combination of an in-house developed 3D ray launching algorithm and a collaborative filtering (CF) technique, which will be used to analyze the performance of ZigBee-based wireless sensor networks (WSNs) to enable ambient assisted living (AAL). The combination of Low Definition results obtained by means of a deterministic ray launching method and the application of a CF technique leads to a drastic reduction of the time and computational cost required to obtain accurate simulation results. The paper also reports that this kind of AAL indoor complex scenario withmultiple wireless devices needs a thorough and personalized radioplanning analysis as radiopropagation has a strong dependence on the network topology and the specific morphology of the scenario. The wireless channel analysis performed by our hybrid method provides valuable insight into network design phases of complex wireless systems, typical in AAL-oriented environments.Thus, it results in optimizing network deployment, reducing overall interference levels, and increasing the overall system performance in terms of cost reduction, transmission rates, and energy efficiency.Publication Open Access Estimation of radiofrequency power leakage from microwave ovens for dosimetric assessment at nonionizing radiation exposure levels(Hindawi, 2015) López Iturri, Peio; Miguel Bilbao, Silvia de; Aguirre Gallego, Erik; Azpilicueta Fernández de las Heras, Leyre; Falcone Lanas, Francisco; Ramos González, Victoria; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta ElektronikoaThe electromagnetic field leakage levels of nonionizing radiation from a microwave oven have been estimated within a complex indoor scenario. By employing a hybrid simulation technique, based on coupling full wave simulation with an in-house developed deterministic 3D ray launching code, estimations of the observed electric field values can be obtained for the complete indoor scenario. The microwave oven can be modeled as a time- and frequency-dependent radiating source, in which leakage, basically from the microwave oven door, is propagated along the complete indoor scenario interacting with all of the elements present in it. Thismethod can be of aid in order to assess the impact of such devices on expected exposure levels, allowing adequate minimization strategies such as optimal location to be applied.Publication Open Access Implementation and analysis of a wireless sensor network-based pet location monitoring system for domestic scenarios(MDPI, 2016) Aguirre Gallego, Erik; López Iturri, Peio; Azpilicueta Fernández de las Heras, Leyre; Astrain Escola, José Javier; Villadangos Alonso, Jesús; Santesteban Martínez de Morentin, Daniel; Falcone Lanas, Francisco; Ingeniaritza Elektrikoa eta Elektronikoa; Institute for Advanced Materials and Mathematics - INAMAT2; Ingeniería Eléctrica y ElectrónicaThe flexibility of new age wireless networks and the variety of sensors to measure a high number of variables, lead to new scenarios where anything can be monitored by small electronic devices, thereby implementing Wireless Sensor Networks (WSN). Thanks to ZigBee, RFID or WiFi networks the precise location of humans or animals as well as some biological parameters can be known in real-time. However, since wireless sensors must be attached to biological tissues and they are highly dispersive, propagation of electromagnetic waves must be studied to deploy an efficient and well-working network. The main goal of this work is to study the influence of wireless channel limitations in the operation of a specific pet monitoring system, validated at physical channel as well as at functional level. In this sense, radio wave propagation produced by ZigBee devices operating at the ISM 2.4 GHz band is studied through an in-house developed 3D Ray Launching simulation tool, in order to analyze coverage/capacity relations for the optimal system selection as well as deployment strategy in terms of number of transceivers and location. Furthermore, a simplified dog model is developed for simulation code, considering not only its morphology but also its dielectric properties. Relevant wireless channel information such as power distribution, power delay profile and delay spread graphs are obtained providing an extensive wireless channel analysis. A functional dog monitoring system is presented, operating over the implemented ZigBee network and providing real time information to Android based devices. The proposed system can be scaled in order to consider different types of domestic pets as well as new user based functionalities.Publication Open Access Spatial characterization of radio propagation channel in urban vehicle-to-infrastructure environments to support WSNs deployment(MDPI, 2017) Granda, Fausto; Azpilicueta Fernández de las Heras, Leyre; Vargas Rosales, César; López Iturri, Peio; Aguirre Gallego, Erik; Astrain Escola, José Javier; Villadangos Alonso, Jesús; Falcone Lanas, Francisco; Ingeniaritza Elektrikoa eta Elektronikoa; Matematika eta Informatika Ingeniaritza; Institute of Smart Cities - ISC; Ingeniería Eléctrica y Electrónica; Ingeniería Matemática e InformáticaVehicular ad hoc Networks (VANETs) enable vehicles to communicate with each other as well as with roadside units (RSUs). Although there is a significant research effort in radio channel modeling focused on vehicle-to-vehicle (V2V), not much work has been done for vehicle-to-infrastructure (V2I) using 3D ray-tracing tools. This work evaluates some important parameters of a V2I wireless channel link such as large-scale path loss and multipath metrics in a typical urban scenario using a deterministic simulation model based on an in-house 3D Ray-Launching (3D-RL) algorithm at 5.9 GHz. Results show the high impact that the spatial distance; link frequency; placement of RSUs; and factors such as roundabout, geometry and relative position of the obstacles have in V2I propagation channel. A detailed spatial path loss characterization of the V2I channel along the streets and avenues is presented. The 3D-RL results show high accuracy when compared with measurements, and represent more reliably the propagation phenomena when compared with analytical path loss models. Performance metrics for a real test scenario implemented with a VANET wireless sensor network implemented ad-hoc are also described. These results constitute a starting point in the design phase of Wireless Sensor Networks (WSNs) radio-planning in the urban V2I deployment in terms of coverage.Publication Open Access Performance evaluation and interference characterization of wireless sensor networks for complex high-node density scenarios(MDPI, 2019) Celaya Echarri, Mikel; Azpilicueta Fernández de las Heras, Leyre; López Iturri, Peio; Aguirre Gallego, Erik; Falcone Lanas, Francisco; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de ComunicaciónThe uncontainable future development of smart regions, as a set of smart cities’ networks assembled, is directly associated with a growing demand of full interactive and connected ubiquitous smart environments. To achieve this global connection goal, large numbers of transceivers and multiple wireless systems will be involved to provide user services and applications anytime and anyplace, regardless the devices, networks, or systems they use. Adequate, efficient and effective radio wave propagation tools, methodologies, and analyses in complex indoor and outdoor environments are crucially required to prevent communication limitations such as coverage, capacity, speed, or channel interferences due to high-node density or channel restrictions. In this work, radio wave propagation characterization in an urban indoor and outdoor wireless sensor network environment has been assessed, at ISM 2.4 GHz and 5 GHz frequency bands. The selected scenario is an auditorium placed in an open free city area surrounded by inhomogeneous vegetation. User density within the scenario, in terms of inherent transceivers density, poses challenges in overall system operation, given by multiple node operation which increases overall interference levels. By means of an in-house developed 3D ray launching (3D-RL) algorithm with hybrid code operation, the impact of variable density wireless sensor network operation is presented, providing coverage/capacity estimations, interference estimation, device level performance and precise characterization of multipath propagation components in terms of received power levels and time domain characteristics. This analysis and the proposed simulation methodology, can lead in an adequate interference characterization extensible to a wide range of scenarios, considering conventional transceivers as well as wearables, which provide suitable information for the overall network performance in crowded indoor and outdoor complex heterogeneous environments.Publication Open Access Integration of autonomous wireless sensor networks in academic school gardens(MDPI, 2018) López Iturri, Peio; Celaya Echarri, Mikel; Azpilicueta Fernández de las Heras, Leyre; Aguirre Gallego, Erik; Astrain Escola, José Javier; Villadangos Alonso, Jesús; Falcone Lanas, Francisco; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaIn this work, the combination of capabilities provided by Wireless Sensor Networks (WSN) with parameter observation in a school garden is employed in order to provide an environment for school garden integration as a complementary educational activity in primary schools. Wireless transceivers with energy harvesting capabilities are employed in order to provide autonomous system operation, combined with an ad-hoc implemented application called MySchoolGardenApp, based on a modular software architecture. The system enables direct parameter observation, data analysis and processing capabilities, which can be employed by students in a cloud based platform. Providing remote data access allows the adaptation of content to specific classroom/homework needs. The proposed monitoring WSN has been deployed in an orchard located in the schoolyard of a primary school, which has been built with EnOcean's energy harvesting modules, providing an optimized node device as well network layout. For the assessment of the wireless link quality and the deployment of the modules, especially the central module which needs to receive directly the signals of all the sensor modules, simulation results obtained by an in-house developed 3D Ray Launching deterministic method have been used, providing coverage/capacity estimations applicable to the specific school environment case. Preliminary trials with MySchoolGardenApp have been performed, showing the feasibility of the proposed platform as an educational resource in schools, with application in specific natural science course content, development of technological skills and the extension of monitoring capabilities to new context-aware applications.Publication Open Access Analysis of bluetooth-based wireless sensor networks performance in hospital environments(MDPI, 2016) López Iturri, Peio; Led Ramos, Santiago; Aguirre Gallego, Erik; Azpilicueta Fernández de las Heras, Leyre; Serrano Arriezu, Luis Javier; Falcone Lanas, Francisco; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta ElektronikoaIn this work, a method to analyze the performance of Bluetooth-based Wireless Sensor Networks (WSN) deployed within hospital environments is presented. Due to the complexity that this kind of scenarios exhibit in terms of radio propagation and coexistence with other wireless communication systems and other potential interference sources, the deployment of WSNs becomes a complex task which requires an in-depth radio planning analysis. For that purpose, simulation results obtained with the aid of an in-house developed 3D Ray Launching code are presented. The scenarios under analysis are located at the Hospital of Navarre Complex (HNC), in the city of Pamplona. As hospitals have a wide variety of scenarios, the analysis has been carried out in different zones such as Boxes, where different medical sensors based on Bluetooth communication protocol have been deployed. The simulation results obtained have been validated with measurements within the scenario under analysis, exhibiting Bluetooth-based WSNs performance within hospital environments in terms of coverage/capacity relations. The proposed methodology can aid in obtaining optimal network configuration and hence performance of Bluetooth-based WSNs within medical/health service provision environments.