Azpilicueta Fernández de las Heras, Leyre

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Azpilicueta Fernández de las Heras

First Name

Leyre

person.page.departamento

Ingeniería Eléctrica, Electrónica y de Comunicación

person.page.instituteName

ISC. Institute of Smart Cities

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 2 of 2
  • PublicationOpen Access
    Radio characterization for ISM 2.4 GHz wireless sensor networks for judo monitoring applications
    (MDPI, 2014) López Iturri, Peio; Aguirre Gallego, Erik; Azpilicueta Fernández de las Heras, Leyre; Astrain Escola, José Javier; Villadangos Alonso, Jesús; Falcone Lanas, Francisco; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Ingeniería Matemática e Informática; Matematika eta Informatika Ingeniaritza
    In this work, the characterization of the radio channel for ISM 2.4GHz Wireless Sensor Networks (WSNs) for judo applications is presented. The environments where judo activity is held are usually complex indoor scenarios in terms of radiopropagation due to their morphology, the presence of humans and the electromagnetic interference generated by personal portable devices, wireless microphones and other wireless systems used by the media. For the assessment of the impact that the topology and the morphology of these environments have on electromagnetic propagation, an in-house developed 3D ray-launching software has been used in this study. Time domain results as well as estimations of received power level have been obtained for the complete volume of a training venue of a local judo club’s facilities with a contest area with the dimensions specified by the International Judo Federation (IJF) for international competitions. The obtained simulation results have been compared with measurements, which have been carried out deploying ZigBee-compliant XBee Pro modules at presented scenario, using approved Judogis (jacket, trousers and belt). The analysis is completed with the inclusion of an in-house human body computational model. Such analysis has allowed the design and development of an in house application devoted to monitor the practice of judo, in order to aid referee activities, training routines and to enhance spectator experience.
  • PublicationOpen Access
    Diffuse-scattering-informed geometric channel modeling for THz wireless communications systems
    (IEEE, 2023) Azpilicueta Fernández de las Heras, Leyre; Schultze, Alper; Celaya Echarri, Mikel; Rodríguez Corbo, Fidel Alejandro; Constantinou, Costas; Shubair, Raed M.; Falcone Lanas, Francisco; Navarro Cía, Miguel; Estadística, Informática y Matemáticas; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute of Smart Cities - ISC; Estatistika, Informatika eta Matematika; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    Surpassing 100 Gbps data throughput is a key objective and an active area of research for sixth-generation (6G) wireless networks that can only be met by exploiting the TeraHertz (THz) frequency band (0.3 - 10 THz). THz channel modeling faces new challenges given the emerging relevance of scattering and molecular absorption in this frequency range as well as the lack of a reliable library of material properties. In this work, we address these challenges by measuring systematically the dielectric properties of 27 common building and office materials and reporting an in-house three-dimensional ray-launching (3D-RL) algorithm that uses the created material library and accounts for rough surface scattering and atmospheric attenuation. In order to validate the proposed algorithm, a channel sounder measurement campaign has been performed in a typical indoor environment at 300 GHz. Simulations and measurements show good agreement, demonstrating the need for modelling scattering and atmospheric absorption in the THz band. The proposed channel model approach enables scenarios at THz frequencies to be investigated by simulation, providing a relevant knowledge for the development of ultra-high-speed wireless communication systems.