Azpilicueta Fernández de las Heras, Leyre

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Azpilicueta Fernández de las Heras

First Name

Leyre

person.page.departamento

Ingeniería Eléctrica, Electrónica y de Comunicación

person.page.instituteName

ISC. Institute of Smart Cities

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 10 of 14
  • PublicationOpen Access
    Optimized wireless channel characterization in large complex environments by hybrid ray launching-collaborative filtering approach
    (IEEE, 2017) Casino, Fran; Azpilicueta Fernández de las Heras, Leyre; López Iturri, Peio; Aguirre Gallego, Erik; Falcone Lanas, Francisco; Solanas, Agustí; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa
    Simulation techniques based on deterministic methods such as Ray Tracing and Ray Launching, are widely used to perform radioplanning tasks. However, the quality of the simulations depends on the number of rays and the angular resolution. The computational cost of these simulations in High Definition prevents their use in complex environments and their Low Definition counterparts are used instead. In this article we propose a technique based on collaborative filtering to lessen the poor quality problems of Low Definition simulations. We show that our approach obtains results very similar to those of High Definition in much less time. Also, we compare our approach with other well-known techniques and we show that it performs better in terms of accuracy and precision. The use of combined deterministic/collaborative filtering techniques allows the estimation of radioplanning tasks in large, complex scenarios with a potentially large amount of transceivers.
  • PublicationOpen Access
    Optimization and design of wireless systems for the implementation of context aware scenarios in railway passenger vehicles
    (IEEE, 2017) Azpilicueta Fernández de las Heras, Leyre; Astrain Escola, José Javier; López Iturri, Peio; Granda, Fausto; Vargas Rosales, César; Villadangos Alonso, Jesús; Perallos Ruiz, Asier; Bahillo, Alfonso; Falcone Lanas, Francisco; Ingeniería Matemática e Informática; Matematika eta Informatika Ingeniaritza; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa
    In this paper, intra-wagon wireless communication performance is analyzed, in order to account for inherent scenario complexity in the deployment phase of wireless systems toward the implementation of a context-aware environment. A real commercial passenger wagon has been simulated by means of an in-house-developed 3-D ray launching code, accounting for embedded wagon elements as well as variable user densities within the passenger wagon. Onboard measurements of a designed and deployed wireless sensor network are obtained, showing good agreement with wireless channel estimations for two different frequencies of operation. Energy consumption behavior and user density impact have also been analyzed and estimated as a function of network topology and the operational mode. These results can aid in wireless transceivers deployment configurations, in order to minimize power consumption, optimize interference levels, and increase overall service performance.
  • PublicationOpen Access
    Performance analysis of IEEE 802.15.4 compliant wireless devices for heterogeneous indoor home automation environments
    (Hindawi, 2012) Nazábal Urriza, Juan Antonio; López Iturri, Peio; Azpilicueta Fernández de las Heras, Leyre; Falcone Lanas, Francisco; Fernández Valdivielso, Carlos; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Gobierno de Navarra / Nafarroako Gobernua
    The influence of topology as well as morphology of complex indoor scenarios in the deployment of wireless sensor networks and wireless systems applied to home and building automation systems is analyzed. The existence of loss mechanisms such as material absorption (walls, furniture, etc.) and strong multipath components as well as the increase in the number of wireless sensors within indoor scenarios increases the relevance in the configuration of the heterogeneous wireless systems. Simulation results by means of empirical-based models are compared with an in-house 3D ray launching code as well as measurement results from wireless sensor networks illustrate the strong influence of the indoor scenario in the overall performance. The use of adequate radioplanning strategies lead to optimal wireless network deployments in terms of capacity, quality of service, and reduced power consumption.
  • PublicationOpen Access
    Spatial characterization of radio propagation channel in urban vehicle-to-infrastructure environments to support WSNs deployment
    (MDPI, 2017) Granda, Fausto; Azpilicueta Fernández de las Heras, Leyre; Vargas Rosales, César; López Iturri, Peio; Aguirre Gallego, Erik; Astrain Escola, José Javier; Villadangos Alonso, Jesús; Falcone Lanas, Francisco; Ingeniaritza Elektrikoa eta Elektronikoa; Matematika eta Informatika Ingeniaritza; Institute of Smart Cities - ISC; Ingeniería Eléctrica y Electrónica; Ingeniería Matemática e Informática
    Vehicular ad hoc Networks (VANETs) enable vehicles to communicate with each other as well as with roadside units (RSUs). Although there is a significant research effort in radio channel modeling focused on vehicle-to-vehicle (V2V), not much work has been done for vehicle-to-infrastructure (V2I) using 3D ray-tracing tools. This work evaluates some important parameters of a V2I wireless channel link such as large-scale path loss and multipath metrics in a typical urban scenario using a deterministic simulation model based on an in-house 3D Ray-Launching (3D-RL) algorithm at 5.9 GHz. Results show the high impact that the spatial distance; link frequency; placement of RSUs; and factors such as roundabout, geometry and relative position of the obstacles have in V2I propagation channel. A detailed spatial path loss characterization of the V2I channel along the streets and avenues is presented. The 3D-RL results show high accuracy when compared with measurements, and represent more reliably the propagation phenomena when compared with analytical path loss models. Performance metrics for a real test scenario implemented with a VANET wireless sensor network implemented ad-hoc are also described. These results constitute a starting point in the design phase of Wireless Sensor Networks (WSNs) radio-planning in the urban V2I deployment in terms of coverage.
  • PublicationOpen Access
    Characterization and consideration of topological impact of wireless propagation in a commercial aircraft environment [wireless corner]
    (IEEE, 2013) Rajo-Iglesias, Eva; Aguirre Gallego, Erik; López Iturri, Peio; Azpilicueta Fernández de las Heras, Leyre; Arpón Díaz-Aldagalán, Javier; Falcone Lanas, Francisco; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa
    Wireless systems are gaining a relevant role for multiple communication tasks within commercial aircrafts. In this work, wireless propagation in an indoor commercial airplane cabin will be analyzed. The impact of indoor elements, such as passenger seats, luggage compartments and a dual deck structure will be considered, with the aid of in-house implemented 3D ray launching code. Multipath propagation plays a relevant role, given by the time domain characteristics obtained by spatially dependent power delay profiles and delay spread. The use of deterministic techniques in order to consider the inherent complexity of the airplane cabin can aid in wireless system planning in order to increase overall system capacity whilst reducing power consumption.
  • PublicationOpen Access
    A ray launching-neural network approach for radio wave propagation analysis in complex indoor environments
    (IEEE, 2014) Azpilicueta Fernández de las Heras, Leyre; Rawat, Meenakshi; Rawat, Karun; Ghannouchi, Fadhel; Falcone Lanas, Francisco; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa
    A novel deterministic approach to model the radio wave propagation channels in complex indoor environments reducing computational complexity is proposed. This technique combines a neural network and a 3D ray launching algorithm in order to compute wireless channel performance in indoor scenarios. An example of applying the method for studying indoor radio wave propagation is presented and the results are compared with a very high resolution fully three dimensional ray launching simulation as the reference solution. The new method allows the use of a lower number of launched rays in the simulation scenario whereas intermediate points can be predicted using neural network. Therefore a high gain in terms of computational efficiency (approximately 80% saving in simulation time) is achieved.
  • PublicationOpen Access
    A hybrid ray launching-diffusion equation approach for propagation prediction in complex indoor environments
    (IEEE, 2017) Azpilicueta Fernández de las Heras, Leyre; Falcone Lanas, Francisco; Janaswamy, Ramakrishna; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa
    A novel and efficient deterministic approach to model radio wave propagation channels in complex indoor environments improving prediction accuracy is proposed. This technique combines a 3-D Ray Launching algorithm based on Geometrical Optics with a Diffusion Equation method based on the equation of transfer. A comparison between the Geometrical Optics only approach and the new method considering the Diffusion Equation has been presented for studying indoor radio wave propagation. The Geometrical Optics-Diffusion Equation method achieves better agreement with measurements, while resulting in high computational efficiency, with approximately 40% savings in simulation time.
  • PublicationOpen Access
    Implementation and operational analysis of an interactive intensive care unit within a smart health context
    (MDPI, 2018) López Iturri, Peio; Aguirre Gallego, Erik; Trigo Vilaseca, Jesús Daniel; Astrain Escola, José Javier; Azpilicueta Fernández de las Heras, Leyre; Serrano Arriezu, Luis Javier; Villadangos Alonso, Jesús; Falcone Lanas, Francisco; Ingeniaritza Elektrikoa eta Elektronikoa; Matematika eta Informatika Ingeniaritza; Institute of Smart Cities - ISC; Ingeniería Eléctrica y Electrónica; Ingeniería Matemática e Informática
    In the context of hospital management and operation, Intensive Care Units (ICU) are one of the most challenging in terms of time responsiveness and criticality, in which adequate resource management and signal processing play a key role in overall system performance. In this work, a context aware Intensive Care Unit is implemented and analyzed to provide scalable signal acquisition capabilities, as well as to provide tracking and access control. Wireless channel analysis is performed by means of hybrid optimized 3D Ray Launching deterministic simulation to assess potential interference impact as well as to provide required coverage/capacity thresholds for employed transceivers. Wireless system operation within the ICU scenario, considering conventional transceiver operation, is feasible in terms of quality of service for the complete scenario. Extensive measurements of overall interference levels have also been carried out, enabling subsequent adequate coverage/capacity estimations, for a set of Zigbee based nodes. Real system operation has been tested, with ad-hoc designed Zigbee wireless motes, employing lightweight communication protocols to minimize energy and bandwidth usage. An ICU information gathering application and software architecture for Visitor Access Control has been implemented, providing monitoring of the Boxes external doors and the identification of visitors via a RFID system. The results enable a solution to provide ICU access control and tracking capabilities previously not exploited, providing a step forward in the implementation of a Smart Health framework.
  • PublicationOpen Access
    Analysis of radio wave propagation for ISM 2.4 GHz wireless sensor networks in inhomogeneous vegetation environments
    (MDPI, 2014) Azpilicueta Fernández de las Heras, Leyre; López Iturri, Peio; Aguirre Gallego, Erik; Mateo Zozaya, Ignacio; Astrain Escola, José Javier; Villadangos Alonso, Jesús; Falcone Lanas, Francisco; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Ingeniería Matemática e Informática; Matematika eta Informatika Ingeniaritza
    The use of wireless networks has experienced exponential growth due to the improvements in terms of battery life and low consumption of the devices. However, it is compulsory to conduct previous radio propagation analysis when deploying a wireless sensor network. These studies are necessary to perform an estimation of the range coverage, in order to optimize the distance between devices in an actual network deployment. In this work, the radio channel characterization for ISM 2.4 GHz Wireless Sensor Networks (WSNs) in an inhomogeneous vegetation environment has been analyzed. This analysis allows designing environment monitoring tools based on ZigBee and WiFi where WSN and smartphones cooperate, providing rich and customized monitoring information to users in a friendly manner. The impact of topology as well as morphology of the environment is assessed by means of an in-house developed 3D Ray Launching code, to emulate the realistic operation in the framework of the scenario. Experimental results gathered from a measurement campaign conducted by deploying a ZigBee Wireless Sensor Network, are analyzed and compared with simulations in this paper. The scenario where this network is intended to operate is a combination of buildings and diverse vegetation species. To gain insight in the effects of radio propagation, a simplified vegetation model has been developed, considering the material parameters and simplified geometry embedded in the simulation scenario. An initial location-based application has been implemented in a real scenario, to test the functionality within a context aware scenario. The use of deterministic tools can aid to know the impact of the topological influence in the deployment of the optimal Wireless Sensor Network in terms of capacity, coverage and energy consumption, making the use of these systems attractive for multiple applications in inhomogeneous vegetation environments.
  • PublicationOpen Access
    Implementation and analysis of a wireless sensor network-based pet location monitoring system for domestic scenarios
    (MDPI, 2016) Aguirre Gallego, Erik; López Iturri, Peio; Azpilicueta Fernández de las Heras, Leyre; Astrain Escola, José Javier; Villadangos Alonso, Jesús; Santesteban Martínez de Morentin, Daniel; Falcone Lanas, Francisco; Ingeniaritza Elektrikoa eta Elektronikoa; Institute for Advanced Materials and Mathematics - INAMAT2; Ingeniería Eléctrica y Electrónica
    The flexibility of new age wireless networks and the variety of sensors to measure a high number of variables, lead to new scenarios where anything can be monitored by small electronic devices, thereby implementing Wireless Sensor Networks (WSN). Thanks to ZigBee, RFID or WiFi networks the precise location of humans or animals as well as some biological parameters can be known in real-time. However, since wireless sensors must be attached to biological tissues and they are highly dispersive, propagation of electromagnetic waves must be studied to deploy an efficient and well-working network. The main goal of this work is to study the influence of wireless channel limitations in the operation of a specific pet monitoring system, validated at physical channel as well as at functional level. In this sense, radio wave propagation produced by ZigBee devices operating at the ISM 2.4 GHz band is studied through an in-house developed 3D Ray Launching simulation tool, in order to analyze coverage/capacity relations for the optimal system selection as well as deployment strategy in terms of number of transceivers and location. Furthermore, a simplified dog model is developed for simulation code, considering not only its morphology but also its dielectric properties. Relevant wireless channel information such as power distribution, power delay profile and delay spread graphs are obtained providing an extensive wireless channel analysis. A functional dog monitoring system is presented, operating over the implemented ZigBee network and providing real time information to Android based devices. The proposed system can be scaled in order to consider different types of domestic pets as well as new user based functionalities.