Torres Salcedo, Alexia

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Torres Salcedo

First Name

Alexia

person.page.departamento

Ingeniería

person.page.instituteName

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 2 of 2
  • PublicationOpen Access
    Analytical modelling of energy density and optimization of the EDM machining parameters of Inconel 600
    (MDPI, 2017) Torres Salcedo, Alexia; Puertas Arbizu, Ignacio; Luis Pérez, Carmelo Javier; Ingeniería Mecánica, Energética y de Materiales; Mekanika, Energetika eta Materialen Ingeniaritza
    In this present research work, a new modelling of energy density in EDM (Electrical Discharge Machining) is proposed. Energy density can be defined as the amount of energy needed to get a unit volume of material removed, and for its modelling, the whole EDM process has been taken into account. This new definition lets us quantify the energy density that is being absorbed by the workpiece and the electrode. Results are compared to those obtained by die sinking EDM in an Inconel ®600 alloy using Cu-C electrodes. Currently, this material is of great interest for industrial applications in the nuclear, aeronautical and chemical sectors, due to their combinations of good mechanical properties, corrosion resistance and extreme hardness at very high temperatures. The experimental results confirm that the use of negative polarity leads to a higher material removal rate, higher electrode wear and higher surface roughness. Moreover, the optimal condition to obtain a maximum MRR (Material Removal Rate) of 30.49 mm3/min was: 8 A, 100 µs and 0.6, respectively, for the current intensity, pulse time and duty cycle.
  • PublicationOpen Access
    A study on the EDM drilling of reaction-bonded silicon carbide using different electrode materials
    (Springer, 2023) Torres Salcedo, Alexia; Luis Pérez, Carmelo Javier; Puertas Arbizu, Ignacio; Corres Sanz, Jesús María; Ingeniería; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Today, there is a growing demand for efficient hole manufacturing technology in many industries such as aeronautics, automotive and nuclear, among others. Thus, the present study deals with the machining of through holes on SiSiC advanced ceramic by using Electrical Discharge Machining (EDM) drilling technology. Since recommendations related to the electrode characteristics and settings parameters are found to be scant for the industrial use of EDM drilling of SiSiC ceramics, this research work comes to cover this gap as it presents a complete study focused on the influence on different electrodes under rough and finish machining conditions. In particular, the influence of four electrodes materials (copper, copper-tungsten, graphite and copper infiltrated graphite) and three different electrode diameters ranging from 2 to 4 mm are investigated. In addition, the rotational speed of the electrode is also analysed. From the experimental results, both electrode material and machining regime, seem to be the most relevant factors of all. In the case of 2 mm diameter electrode, material removal rate (MRR) with Cu electrode was, approximately, 4.5 times higher than that obtained with a C electrode. In fact, it was found that copper electrode rotating at 20 rpm combined with high values of discharge energy (I = 2 A; ti = 70 µs) is the most economical option in terms of production cost and production time, as it gives a high MRR of 0.4754 mm3/min and a minimum electrode wear (EW) value of 7.52%. Moreover, slightly higher values of MRR were achieved for CuC electrode compared to those obtained with C electrode, indicating that the addition of Cu in the electrode contributes to a greater removal of material. However, a value of Ra of 0.37 µm could be obtained by setting low current intensity values (I = 0.5 A; ti = 45 µs) combined with C electrodes and with no rotation.