Sanz Delgado, José Antonio

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Sanz Delgado

First Name

José Antonio

person.page.departamento

Estadística, Informática y Matemáticas

person.page.instituteName

ISC. Institute of Smart Cities

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 10 of 18
  • PublicationOpen Access
    Pre-aggregation functions: construction and an application
    (IEEE, 2015) Lucca, Giancarlo; Sanz Delgado, José Antonio; Pereira Dimuro, Graçaliz; Bedregal, Benjamin; Mesiar, Radko; Kolesárová, Anna; Bustince Sola, Humberto; Automática y Computación; Automatika eta Konputazioa
    In this work we introduce the notion of preaggregation function. Such a function satisfies the same boundary conditions as an aggregation function, but, instead of requiring monotonicity, only monotonicity along some fixed direction (directional monotonicity) is required. We present some examples of such functions. We propose three different methods to build pre-aggregation functions. We experimentally show that in fuzzy rule-based classification systems, when we use one of these methods, namely, the one based on the use of the Choquet integral replacing the product by other aggregation functions, if we consider the minimum or the Hamacher product t-norms for such construction, we improve the results obtained when applying the fuzzy reasoning methods obtained using two classical averaging operators like the maximum and the Choquet integral.
  • PublicationOpen Access
    Evolution in time of L-fuzzy context sequences
    (Elsevier, 2016) Alcalde, Cristina; Burusco Juandeaburre, Ana; Bustince Sola, Humberto; Jurío Munárriz, Aránzazu; Sanz Delgado, José Antonio; Automatika eta Konputazioa; Institute of Smart Cities - ISC; Automática y Computación; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    In this work, we consider a complete lattice L and we study L-fuzzy context sequences which represent the evolution in time of an L-fuzzy context. To carry out this study, in the first part of the paper, we consider n-ary OWA operators in complete lattices, which enable us to make a general analysis and a temporal analysis at any moment in time of L-fuzzy context sequences. After that, evolution in time of the relationship between the objects and the attributes is considered. In particular, we analyze the concepts of Trend and Persistent formal contexts. Finally, we illustrate our results with an example where we consider the particular lattice L = J ([0, 1]).
  • PublicationOpen Access
    Using the Choquet integral in the fuzzy reasoning method of fuzzy rule-based classification systems
    (MDPI, 2013) Barrenechea Tartas, Edurne; Bustince Sola, Humberto; Fernández Fernández, Francisco Javier; Paternain Dallo, Daniel; Sanz Delgado, José Antonio; Automática y Computación; Automatika eta Konputazioa
    In this paper we present a new fuzzy reasoning method in which the Choquet integral is used as aggregation function. In this manner, we can take into account the interaction among the rules of the system. For this reason, we consider several fuzzy measures, since it is a key point on the subsequent success of the Choquet integral, and we apply the new method with the same fuzzy measure for all the classes. However, the relationship among the set of rules of each class can be different and therefore the best fuzzy measure can change depending on the class. Consequently, we propose a learning method by means of a genetic algorithm in which the most suitable fuzzy measure for each class is computed. From the obtained results it is shown that our new proposal allows the performance of the classical fuzzy reasoning methods of the winning rule and additive combination to be enhanced whenever the fuzzy measure is appropriate for the tackled problem.
  • PublicationUnknown
    Extensions of fuzzy sets in image processing: an overview
    (EUSFLAT, 2011) Pagola Barrio, Miguel; Barrenechea Tartas, Edurne; Bustince Sola, Humberto; Fernández Fernández, Francisco Javier; Galar Idoate, Mikel; Jurío Munárriz, Aránzazu; López Molina, Carlos; Paternain Dallo, Daniel; Sanz Delgado, José Antonio; Couto, Pedro; Melo-Pinto, Pedro; Automática y Computación; Automatika eta Konputazioa
    This work presents a valuable review for the interested reader of the recent Works using extensions of fuzzy sets in image processing. The chapter is divided as follows: first we recall the basics of the extensions of fuzzy sets, i.e. Type 2 fuzzy sets, interval-valued fuzzy sets and Atanassov’s intuitionistic fuzzy sets. In sequent sections we review the methods proposed for noise removal (sections 3), image enhancement (section 4), edge detection (section 5) and segmentation (section 6). There exist other image segmentation tasks such as video de-interlacing, stereo matching or object representation that are not described in this work.
  • PublicationUnknown
    Multimodal fuzzy fusion for enhancing the motor-imagery-based brain computer interface
    (IEEE, 2019) Ko, Li-Wei; Lu, Yi-Chen; Bustince Sola, Humberto; Chang, Yu-Cheng; Chang, Yang; Fernández Fernández, Francisco Javier; Wang, Yu-Kai; Sanz Delgado, José Antonio; Pereira Dimuro, Graçaliz; Lin, Chin-Teng; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC; Estadística, Informática y Matemáticas
    Brain–computer interface technologies, such as steady-state visually evoked potential, P300, and motor imagery are methods of communication between the human brain and the external devices. Motor imagery–based brain–computer interfaces are popular because they avoid unnecessary external stimulus. Although feature extraction methods have been illustrated in several machine intelligent systems in motor imagery-based brain–computer interface studies, the performance remains unsatisfactory. There is increasing interest in the use of the fuzzy integrals, the Choquet and Sugeno integrals, that are appropriate for use in applications in which fusion of data must consider possible data interactions. To enhance the classification accuracy of brain-computer interfaces, we adopted fuzzy integrals, after employing the classification method of traditional brain–computer interfaces, to consider possible links between the data. Subsequently, we proposed a novel classification framework called the multimodal fuzzy fusion-based brain-computer interface system. Ten volunteers performed a motor imagery-based brain-computer interface experiment, and we acquired electroencephalography signals simultaneously. The multimodal fuzzy fusion-based brain-computer interface system enhanced performance compared with traditional brain–computer interface systems. Furthermore, when using the motor imagery-relevant electroencephalography frequency alpha and beta bands for the input features, the system achieved the highest accuracy, up to 78.81% and 78.45% with the Choquet and Sugeno integrals, respectively. Herein, we present a novel concept for enhancing brain–computer interface systems that adopts fuzzy integrals, especially in the fusion for classifying brain–computer interface commands.
  • PublicationOpen Access
    Improving the performance of fuzzy rule-based classification systems with interval-valued fuzzy sets and genetic amplitude tuning
    (Elsevier, 2010) Sanz Delgado, José Antonio; Fernández, Alberto; Bustince Sola, Humberto; Herrera, Francisco; Automática y Computación; Automatika eta Konputazioa
    Among the computational intelligence techniques employed to solve classification problems, Fuzzy Rule-Based Classification Systems (FRBCSs) are a popular tool because of their interpretable models based on linguistic variables, which are easier to understand for the experts or end-users. The aim of this paper is to enhance the performance of FRBCSs by extending the Knowledge Base with the application of the concept of Interval-Valued Fuzzy Sets (IVFSs). We consider a post-processing genetic tuning step that adjusts the amplitude of the upper bound of the IVFS to contextualize the fuzzy partitions and to obtain a most accurate solution to the problem. We analyze the goodness of this approach using two basic and well-known fuzzy rule learning algorithms, the Chi et al.’s method and the fuzzy hybrid genetics-based machine learning algorithm. We show the improvement achieved by this model through an extensive empirical study with a large collection of data-sets.
  • PublicationUnknown
    IVTURS: A linguistic fuzzy rule-based classification system based on a new interval-valued fuzzy reasoning method with tuning and rule selection
    (IEEE, 2013) Sanz Delgado, José Antonio; Fernández, Alberto; Bustince Sola, Humberto; Herrera, Francisco; Automática y Computación; Automatika eta Konputazioa
    Interval-valued fuzzy sets have been shown to be a useful tool for dealing with the ignorance related to the definition of the linguistic labels. Specifically, they have been successfully applied to solve classification problems, performing simple modifications on the fuzzy reasoning method to work with this representation and making the classification based on a single number. In this paper we present IVTURS, a new linguistic fuzzy rule-based classification method based on a new completely interval-valued fuzzy reasoning method. This inference process uses interval-valued restricted equivalence functions to increase the relevance of the rules in which the equivalence of the interval membership degrees of the patterns and the ideal membership degrees is greater, which is a desirable behaviour. Furthermore, their parametrized construction allows the computation of the optimal function for each variable to be performed, which could involve a potential improvement in the system’s behaviour. Additionally, we combine this tuning of the equivalence with rule selection in order to decrease the complexity of the system. In this paper we name our method IVTURS-FARC, since we use the FARC-HD method to accomplish the fuzzy rule learning process. The experimental study is developed in three steps in order to ascertain the quality of our new proposal. First, we determine both the essential role that interval-valued fuzzy sets play in the method and the need for the rule selection process. Next, we show the improvements achieved by IVTURS-FARC with respect to the tuning of the degree of ignorance when it is applied in both an isolated way and when combined with the tuning of the equivalence. Finally, the significance of IVTURS-FARC is further depicted by means of a comparison by which it is proved to outperform the results of FARC-HD and FURIA, which are two high performing fuzzy classification algorithms.
  • PublicationUnknown
    A decision tree based approach with sampling techniques to predict the survival status of poly-trauma patients
    (Atlantis Press, 2017) Sanz Delgado, José Antonio; Fernández Fernández, Francisco Javier; Bustince Sola, Humberto; Gradín Purroy, Carlos; Belzunegui Otano, Tomás; Automatika eta Konputazioa; Osasun Zientziak; Institute of Smart Cities - ISC; Automática y Computación; Ciencias de la Salud; Gobierno de Navarra / Nafarroako Gobernua, PI-019/11
    Survival prediction of poly-trauma patients measure the quality of emergency services by comparing their predictions with the real outcomes. The aim of this paper is to tackle this problem applying C4.5 since it achieves accurate results and it provides interpretable models. Furthermore, we use sampling techniques because, among the 378 patients treated at the Hospital of Navarre, the number of survivals excels that of deaths. Logistic regressions are used in the comparison, since they are an standard in this domain.
  • PublicationOpen Access
    Enhancing multi-class classification in FARC-HD fuzzy classifier: on the synergy between n-dimensional overlap functions and decomposition strategies
    (IEEE, 2014) Elkano Ilintxeta, Mikel; Galar Idoate, Mikel; Sanz Delgado, José Antonio; Fernández, Alberto; Barrenechea Tartas, Edurne; Herrera, Francisco; Bustince Sola, Humberto; Automática y Computación; Automatika eta Konputazioa
    There are many real-world classification problems involving multiple classes, e.g., in bioinformatics, computer vision or medicine. These problems are generally more difficult than their binary counterparts. In this scenario, decomposition strategies usually improve the performance of classifiers. Hence, in this paper we aim to improve the behaviour of FARC-HD fuzzy classifier in multi-class classification problems using decomposition strategies, and more specifically One-vs-One (OVO) and One-vs-All (OVA) strategies. However, when these strategies are applied on FARC-HD a problem emerges due to the low confidence values provided by the fuzzy reasoning method. This undesirable condition comes from the application of the product t-norm when computing the matching and association degrees, obtaining low values, which are also dependent on the number of antecedents of the fuzzy rules. As a result, robust aggregation strategies in OVO such as the weighted voting obtain poor results with this fuzzy classifier. In order to solve these problems, we propose to adapt the inference system of FARC-HD replacing the product t-norm with overlap functions. To do so, we define n-dimensional overlap functions. The usage of these new functions allows one to obtain more adequate outputs from the base classifiers for the subsequent aggregation in OVO and OVA schemes. Furthermore, we propose a new aggregation strategy for OVO to deal with the problem of the weighted voting derived from the inappropriate confidences provided by FARC-HD for this aggregation method. The quality of our new approach is analyzed using twenty datasets and the conclusions are supported by a proper statistical analysis. In order to check the usefulness of our proposal, we carry out a comparison against some of the state-of-the-art fuzzy classifiers. Experimental results show the competitiveness of our method.
  • PublicationUnknown
    A genetic tuning to improve the performance of fuzzy rule-based classification systems with interval-valued fuzzy sets: degree of ignorance and lateral position
    (Elsevier, 2011) Sanz Delgado, José Antonio; Fernández, Alberto; Bustince Sola, Humberto; Herrera, Francisco; Automática y Computación; Automatika eta Konputazioa
    Fuzzy Rule-Based Systems are appropriate tools to deal with classification problems due to their good properties. However, they can suffer a lack of system accuracy as a result of the uncertainty inherent in the definition of the membership functions and the limitation of the homogeneous distribution of the linguistic labels. The aim of the paper is to improve the performance of Fuzzy Rule-Based Classification Systems by means of the Theory of Interval-Valued Fuzzy Sets and a post-processing genetic tuning step. In order to build the Interval-Valued Fuzzy Sets we define a new function called weak ignorance for modeling the uncertainty associated with the definition of the membership functions. Next, we adapt the fuzzy partitions to the problem in an optimal way through a cooperative evolutionary tuning in which we handle both the degree of ignorance and the lateral position (based on the 2-tuples fuzzy linguistic representation) of the linguistic labels. The experimental study is carried out over a large collection of data-sets and it is supported by a statistical analysis. Our results show empirically that the use of our methodology outperforms the initial Fuzzy-Rule Based Classification System. The application of our cooperative tuning enhances the results provided by the use of the isolated tuning approaches and also improves the behavior of the genetic tuning based on the 3-tuples fuzzy linguistic representation.