Sanz Delgado, José Antonio

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Sanz Delgado

First Name

José Antonio

person.page.departamento

Estadística, Informática y Matemáticas

person.page.instituteName

ISC. Institute of Smart Cities

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 3 of 3
  • PublicationOpen Access
    IVTURS: A linguistic fuzzy rule-based classification system based on a new interval-valued fuzzy reasoning method with tuning and rule selection
    (IEEE, 2013) Sanz Delgado, José Antonio; Fernández, Alberto; Bustince Sola, Humberto; Herrera, Francisco; Automática y Computación; Automatika eta Konputazioa
    Interval-valued fuzzy sets have been shown to be a useful tool for dealing with the ignorance related to the definition of the linguistic labels. Specifically, they have been successfully applied to solve classification problems, performing simple modifications on the fuzzy reasoning method to work with this representation and making the classification based on a single number. In this paper we present IVTURS, a new linguistic fuzzy rule-based classification method based on a new completely interval-valued fuzzy reasoning method. This inference process uses interval-valued restricted equivalence functions to increase the relevance of the rules in which the equivalence of the interval membership degrees of the patterns and the ideal membership degrees is greater, which is a desirable behaviour. Furthermore, their parametrized construction allows the computation of the optimal function for each variable to be performed, which could involve a potential improvement in the system’s behaviour. Additionally, we combine this tuning of the equivalence with rule selection in order to decrease the complexity of the system. In this paper we name our method IVTURS-FARC, since we use the FARC-HD method to accomplish the fuzzy rule learning process. The experimental study is developed in three steps in order to ascertain the quality of our new proposal. First, we determine both the essential role that interval-valued fuzzy sets play in the method and the need for the rule selection process. Next, we show the improvements achieved by IVTURS-FARC with respect to the tuning of the degree of ignorance when it is applied in both an isolated way and when combined with the tuning of the equivalence. Finally, the significance of IVTURS-FARC is further depicted by means of a comparison by which it is proved to outperform the results of FARC-HD and FURIA, which are two high performing fuzzy classification algorithms.
  • PublicationOpen Access
    IIVFDT: ignorance functions based interval-valued fuzzy decision tree with genetic tuning
    (World Scientific Publishing Company, 2012) Sanz Delgado, José Antonio; Fernández, Alberto; Bustince Sola, Humberto; Herrera, Francisco; Automática y Computación; Automatika eta Konputazioa
    The choice of membership functions plays an essential role in the success of fuzzy systems. This is a complex problem due to the possible lack of knowledge when assigning punctual values as membership degrees. To face this handicap, we propose a methodology called Ignorance functions based Interval-Valued Fuzzy Decision Tree with genetic tuning, IIVFDT for short, which allows to improve the performance of fuzzy decision trees by taking into account the ignorance degree. This ignorance degree is the result of a weak ignorance function applied to the punctual value set as membership degree. Our IIVFDT proposal is composed of four steps: (1) the base fuzzy decision tree is generated using the fuzzy ID3 algorithm; (2) the linguistic labels are modeled with Interval-Valued Fuzzy Sets. To do so, a new parametrized construction method of Interval-Valued Fuzzy Sets is defined, whose length represents such ignorance degree; (3) the fuzzy reasoning method is extended to work with this representation of the linguistic terms; (4) an evolutionary tuning step is applied for computing the optimal ignorance degree for each Interval-Valued Fuzzy Set. The experimental study shows that the IIVFDT method allows the results provided by the initial fuzzy ID3 with and without Interval-Valued Fuzzy Sets to be outperformed. The suitability of the proposed methodology is shown with respect to both several state-of-the-art fuzzy decision trees and C4.5. Furthermore, we analyze the quality of our approach versus two methods that learn the fuzzy decision tree using genetic algorithms. Finally, we show that a superior performance can be achieved by means of the positive synergy obtained when applying the well known genetic tuning of the lateral position after the application of the IIVFDT method. The choice of membership functions plays an essential role in the success of fuzzy systems. This is a complex problem due to the possible lack of knowledge when assigning punctual values as membership degrees. To face this handicap, we propose a methodology called Ignorance functions based Interval-Valued Fuzzy Decision Tree with genetic tuning, IIVFDT for short, which allows to improve the performance of fuzzy decision trees by taking into account the ignorance degree. This ignorance degree is the result of a weak ignorance function applied to the punctual value set as membership degree. Our IIVFDT proposal is composed of four steps: (1) the base fuzzy decision tree is generated using the fuzzy ID3 algorithm; (2) the linguistic labels are modeled with Interval-Valued Fuzzy Sets. To do so, a new parametrized construction method of Interval-Valued Fuzzy Sets is defined, whose length represents such ignorance degree; (3) the fuzzy reasoning method is extended to work with this representation of the linguistic terms; (4) an evolutionary tuning step is applied for computing the optimal ignorance degree for each Interval-Valued Fuzzy Set. The experimental study shows that the IIVFDT method allows the results provided by the initial fuzzy ID3 with and without Interval-Valued Fuzzy Sets to be outperformed. The suitability of the proposed methodology is shown with respect to both several state-of-the-art fuzzy decision trees and C4.5. Furthermore, we analyze the quality of our approach versus two methods that learn the fuzzy decision tree using genetic algorithms. Finally, we show that a superior performance can be achieved by means of the positive synergy obtained when applying the well known genetic tuning of the lateral position after the application of the IIVFDT method.
  • PublicationOpen Access
    Medical diagnosis of cardiovascular diseases using an interval-valued fuzzy rule-based classification system
    (Elsevier, 2013) Sanz Delgado, José Antonio; Galar Idoate, Mikel; Jurío Munárriz, Aránzazu; Brugos Larumbe, Antonio; Pagola Barrio, Miguel; Bustince Sola, Humberto; Automática y Computación; Automatika eta Konputazioa; Ciencias de la Salud; Osasun Zientziak; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Objective: To develop a classifier that tackles the problem of determining the risk of a patient of suffering from a cardiovascular disease within the next ten years. The system has to provide both a diagnosis and an interpretable model explaining the decision. In this way, doctors are able to analyse the usefulness of the information given by the system. Methods: Linguistic fuzzy rule-based classification systems are used, since they provide a good classification rate and a highly interpretable model. More specifically, a new methodology to combine fuzzy rule-based classification systems with interval-valued fuzzy sets is proposed, which is composed of three steps: 1) the modelling of the linguistic labels of the classifier using interval-valued fuzzy sets; 2) the use of the Kα operator in the inference process and 3) the application of a genetic tuning to find the best ignorance degree that each interval-valued fuzzy set represents as well as the best value for the parameter α of the Kα operator in each rule. Results: The suitability of the new proposal to deal with this medical diagnosis classification problem is shown by comparing its performance with respect to the one provided by two classical fuzzy classifiers and a previous interval-valued fuzzy rule-based classification system. The performance of the new method is statistically better than the ones obtained with the methods considered in the comparison. The new proposal enhances both the total number of correctly diagnosed patients, around 3% with respect the classical fuzzy classifiers and around 1% versus the previous interval-valued fuzzy classifier, and the classifier ability to correctly differentiate patients of the different risk categories. Conclusion: The proposed methodology is a suitable tool to face the medical diagnosis of cardiovascular diseases, since it obtains a good classification rate and it also provides an interpretable model that can be easily understood by the doctors.