Orazbayev, Bakhtiyar
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Orazbayev
First Name
Bakhtiyar
person.page.departamento
Ingeniería Eléctrica y Electrónica
person.page.instituteName
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
3 results
Search Results
Now showing 1 - 3 of 3
Publication Open Access Experimental demonstration of metasurface-based ultrathin carpet cloaks for millimetre waves(Wiley, 2016) Orazbayev, Bakhtiyar; Mohammadi Estakhri, Nasim; Alù, Andrea; Beruete Díaz, Miguel; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta ElektronikoaA metasurface carpet cloak for millimeter-wave range with polarization-independent performance is experimentally demonstrated. It is shown that the cloak is able to mimic the ground plane by fully restoring the amplitude and phase distributions for both transverse electric and transverse magnetic polarizations, with a relatively wide frequency and angular widths response.Publication Open Access Tripod-loop metasurfaces for terahertz-sensing applications: a comparison(MDPI, 2020) Jáuregui López, Irati; Orazbayev, Bakhtiyar; Pacheco-Peña, Víctor; Beruete Díaz, Miguel; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute of Smart Cities - ISC; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio IngeniaritzarenThe high electric field intensity achieved on the surface of sensors based on metasurfaces (metasensors) makes them an excellent alternative for sensing applications where the volume of the sample to be identified is tiny (for instance, thin-film sensing devices). Various shapes and geometries have been proposed recently for the design of these metasensors unit-cells (meta-atoms) such as split ring resonators or hole arrays, among others. In this paper, we propose, design, and evaluate two types of tripod metasurfaces with different complexity in their geometry. An in-depth comparison of their performance is presented when using them as thin-film sensor devices. The meta-atoms of the proposed metasensors consist of a simple tripod and a hollow tripod structure. From numerical calculations, it is shown that the best geometry to perform thin-film sensing is the compact hollow tripod (due to the highest electric field on its surface) with a mean sensitivity of 3.72 × 10−5 nm−1. Different modifications are made to this structure to improve this value, such as introducing arms in the design and rotating the metallic pattern 30 degrees. The best sensitivity achieved for extremely thin film analytes (5–25 nm thick) has an average value of 1.42 × 10−4 nm, which translates into an extremely high improvement of 381% with respect to the initial hollow tripod structure. Finally, a comparison with other designs found in the literature shows that our design is at the top of the ranking, improving the overall performance by more than one order of magnitude. These results highlight the importance of using metastructures with more complex geometries so that a higher electric field intensity distribution and, therefore, designs with better performance can be obtained.Publication Open Access Metasurface-based ultrathin carpet cloaks for millimeter waves(2017) Orazbayev, Bakhtiyar; Mohammadi Estakhri, Nasim; Alù, Andrea; Beruete Díaz, Miguel; Ingeniaritza Elektrikoa eta Elektronikoa; Institute of Smart Cities - ISC; Ingeniería Eléctrica y ElectrónicaA metasurface carpet cloak for millimetre-wave range with polarization independent performance is experimentally demonstrated. It is shown that the cloak is able to mimic the ground plane by fully restoring the amplitude and phase distributions for both TE and TM polarizations, with a relatively wide frequency and angular widths response.