Orazbayev, Bakhtiyar
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Orazbayev
First Name
Bakhtiyar
person.page.departamento
Ingeniería Eléctrica y Electrónica
person.page.instituteName
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
2 results
Search Results
Now showing 1 - 2 of 2
Publication Open Access Zoned fishnet lens antenna with reference phase for side lobe reduction(IEEE, 2015) Pacheco-Peña, Víctor; Navarro Cía, Miguel; Orazbayev, Bakhtiyar; Minin, Igor V.; Minin, Oleg V.; Beruete Díaz, Miguel; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta ElektronikoaReduction of first side lobe level and nulls in artificial fishnet metalenses is accomplished here by applying the reference phase concept along with the zoning technique. Higher focusing efficiency is achieved for a specific reference phase when comparing numerically and experimentally four different designs. For such best design, an improvement of the first side lobe level (2.4 dB), first null (13 dB) and gain (1.77dB) is achieved experimentally compared to the design without reference phase.Publication Open Access Zoned near-zero refractive index fishnet lens antenna: steering millimeter waves(AIP Publishing, 2014) Pacheco-Peña, Víctor; Orazbayev, Bakhtiyar; Beaskoetxea Gartzia, Unai; Beruete Díaz, Miguel; Navarro Cía, Miguel; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta ElektronikoaA zoned fishnet metamaterial lens is designed, fabricated, and experimentally demonstrated at millimeter wavelengths to work as a negative near-zero refractive index lens suitable for compact lens antenna configurations. At the design frequency f=56.7GHz (wavelength = 5.29 mm), the zoned fishnet metamaterial lens, designed to have a focal length FL= 9 wavelengths, exhibits a refractive index n = 0.25. The focusing performance of the diffractive optical element is briefly compared with that of a non-zoned fishnet metamaterial lens and an isotropic homogeneous zoned lens made of a material with the same refractive index. Experimental and numerically-computed radiation diagrams of the fabricated zoned lens are presented and compared in detail with that of a simulated non-zoned lens. Simulation and experimental results are in good agreement, demonstrating an enhancement generated by the zoned lens of 10.7 dB, corresponding to a gain of 12.26 dB. Moreover, beam steering capability of the structure by shifting the feeder on the xz-plane is demonstrated.