Hernáez Sáenz de Zaitigui, Miguel

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Hernáez Sáenz de Zaitigui

First Name

Miguel

person.page.departamento

Ingeniería Eléctrica y Electrónica

person.page.instituteName

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 3 of 3
  • PublicationOpen Access
    Sensors based on thin-film coated cladding removed multimode optical fiber and single-mode multimode single-mode fiber: a comparative study
    (Hindawi Publishing Corporation, 2015) Del Villar, Ignacio; Socorro Leránoz, Abián Bentor; Hernáez Sáenz de Zaitigui, Miguel; Corres Sanz, Jesús María; Ruiz Zamarreño, Carlos; Sánchez Zábal, Pedro; Arregui San Martín, Francisco Javier; Matías Maestro, Ignacio; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa
    Two simple optical fibre structures that do not require the inscription of a grating, a cladding removed multimode optical fibre (CRMOF) and a single-mode multimode single-mode structure (SMS), are compared in terms of their adequateness for sensing once they are coated with thin-films.The thin-film deposited (TiO2/PSS) permits increasing the sensitivity to surrounding medium refractive index. The results obtained can be extrapolated to other fields such as biological or chemical sensing just by replacing the thin-film by a specific material.
  • PublicationOpen Access
    Generation of lossy mode resonances by deposition of high-refractive-index coatings on uncladded multimode optical fibers
    (IOP Publishing Ltd, 2010) Del Villar, Ignacio; Ruiz Zamarreño, Carlos; Sánchez Zábal, Pedro; Hernáez Sáenz de Zaitigui, Miguel; Fernández Valdivielso, Carlos; Arregui San Martín, Francisco Javier; Matías Maestro, Ignacio; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa
    A comparative study of lossy mode resonances generated by depositing two different materials is presented. The two materials selected are indium tin oxide (ITO) and indium oxide. The two materials present different dielectric dispersion, which leads to the generation of single-peak lossy mode resonances with the ITO coated optical fibers and dual-peak lossy mode resonances with the In2O3 coated optical fibers. The obvious advantage of a dual-peak based measurement in the sensors field is enhanced by a sensitivity increase observed in sensors based on In2O3 if compared with those based on ITO. These characteristics are analyzed both theoretically and experimentally.
  • PublicationOpen Access
    Fiber-optic pH sensors fabrication based on selective deposition of neutral red
    (IEEE, 2009-01-22) Hernáez Sáenz de Zaitigui, Miguel; Arregui San Martín, Francisco Javier; Matías Maestro, Ignacio; Ruiz Zamarreño, Carlos; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa
    In this work, a novel application of the electric field directed layer-by-layer self assembly (EFDLA) selective deposition method for the fabrication of optical fiber pH sensors is presented. Here, indium tin oxide (ITO) coated optical fibers have been fabricated via a dip-coating deposition method. These fibers are used as electrodes in the EFDLA protocol in order to deposit selectively the sensitive layer. Neutral Red (NR) colorimetric pH sensitive indicator and the polymers poly(acrylic acid) (PAA) and poly(allylamine hydrochloride) (PAH) are used in order to obtain a pH sensitive nanostructured coating onto ITO coated optical fibers. The results obtained in this work revealed that the LbL material adsorption on the electrodes can be enhanced or even inhibited when applying a specific direct current voltage between them under some other specific fabrication parameters. Particularly, the response of these sensors to variations of the pH in the surrounding medium was studied when the pH of the solutions used for the fabrication of the films was adjusted to 7.0 and the potential applied between electrodes was set to 2.5 V. These sensors showed fast response time and high repeatability.