Muñoz Escribano, Mikel
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Muñoz Escribano
First Name
Mikel
person.page.departamento
Ingeniería Eléctrica y Electrónica
person.page.instituteName
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
2 results
Search Results
Now showing 1 - 2 of 2
Publication Open Access A tool for the performance evaluation and failure detection of Amareleja PV plant (Acciona) from SCADA(2015) Muñoz Escribano, Mikel; Parra Laita, Íñigo de la; García Solano, Miguel; Marcos Álvarez, Javier; Pérez, Miguel; Ingeniaritza Elektrikoa eta Elektronikoa; Institute of Smart Cities - ISC; Ingeniería Eléctrica y ElectrónicaThis paper describes a tool developed for the performance evaluation and failure detection in a 45.6 MWp PV plant installed by the company Acciona in Amareleja (Portugal). The paper describes the PV plant configuration and its SCADA (Supervisory Control And Data Acquisition), the measured variables and the main functionalities of the software. Some of these functionalities are the automatic and accurate PSTC (Power under standard test conditions1) calculation for each generator and for the whole PV Plant, the reference production that would be delivered by the PV plant assuming a 100% availability, the hierarchy of SCADA alarms, the detection of long-term trends and degradation in PV generators, possible hidden problems in the different equipment and systems composing the PV plant, etc. This tool entered into operation in 2011 and is working properly since then.Publication Open Access PV power forecasting using a parametric model(2015) Muñoz Escribano, Mikel; Parra Laita, Íñigo de la; García Solano, Miguel; Marcos Álvarez, Javier; Ingeniaritza Elektrikoa eta Elektronikoa; Institute of Smart Cities - ISC; Ingeniería Eléctrica y ElectrónicaNowadays, accurate AC power output forecast of PV plants can play a significant role for both the system operators and PV plant owners. The first group has to program the dispatch of the electric system and the second one needs to plan their energy commercialization schedule up front. Therefore, after analyzing the existing commercial services of PV production forecast, it has been identified the potential to improve the models used to calculate the AC power output from irradiance and ambient temperature forecasts. Then, in this paper, a parametric model is proposed in order to improve the forecast performance. This model provides the AC power at the output of the PV plan using as input variables predicted ambient temperature and predicted global horizontal irradiance, both obtained from open sources. It has been evaluated and validated using historical production data of a fixed generator (2,24kWp) and a large PV power plant (45MWp) and historical forecast data from the open source Meteogalicia In addition, a toolbox to implement this parametric methodology has been built upon the Matlab environment. The toolbox has been developed to provide the PV plant production one day in advance.