Campión Arrastia, María Jesús
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Campión Arrastia
First Name
María Jesús
person.page.departamento
Estadística, Informática y Matemáticas
person.page.instituteName
INARBE. Institute for Advanced Research in Business and Economics
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
2 results
Search Results
Now showing 1 - 2 of 2
Publication Open Access A survey on the mathematical foundations of axiomatic entropy: representability and orderings(MDPI, 2018) Campión Arrastia, María Jesús; Gómez Polo, Cristina; Induráin Eraso, Esteban; Raventós Pujol, Armajac; Estatistika, Informatika eta Matematika; Zientziak; Institute for Advanced Research in Business and Economics - INARBE; Institute for Advanced Materials and Mathematics - INAMAT2; Estadística, Informática y Matemáticas; CienciasDifferent abstract versions of entropy, encountered in science, are interpreted in the light of numerical representations of several ordered structures, as total-preorders, interval-orders and semiorders. Intransitivities, other aspects of entropy as competitive systems, additivity, etc., are also viewed in terms of representability of algebraic structures endowed with some compatible ordering. A particular attention is paid to the problem of the construction of an entropy function or their mathematical equivalents. Multidisciplinary comparisons to other similar frameworks are also discussed, pointing out the mathematical foundations.Publication Embargo Binary relations coming from solutions of functional equations: orderings and fuzzy subsets(World Scientific Publishing Company, 2017) Campión Arrastia, María Jesús; Miguel Turullols, Laura de; García Catalán, Olga Raquel; Induráin Eraso, Esteban; Abrísqueta Usaola, Francisco Javier; Automatika eta Konputazioa; Matematika; Institute of Smart Cities - ISC; Institute for Advanced Research in Business and Economics - INARBE; Institute for Advanced Materials and Mathematics - INAMAT2; Automática y Computación; Matemáticas; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaWe analyze the main properties of binary relations, defined on a nonempty set, that arise in a natural way when dealing with real-valued functions that satisfy certain classical functional equations on two variables. We also consider the converse setting, namely, given binary relations that accomplish some typical properties, we study whether or not they come from solutions of some functional equation. Applications to the numerical representability theory of ordered structures are also furnished as a by-product. Further interpretations of this approach as well as possible generalizations to the fuzzy setting are also commented. In particular, we discuss how the values taken for bivariate functions that are bounded solutions of some classical functional equations define, in a natural way, fuzzy binary relations on a set.