Gómez Laso, Miguel Ángel

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Gómez Laso

First Name

Miguel Ángel

person.page.departamento

Ingeniería Eléctrica, Electrónica y de Comunicación

person.page.instituteName

ISC. Institute of Smart Cities

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 10 of 35
  • PublicationOpen Access
    Synthesis of one dimensional electromagnetic bandgap structures with fully controlled parameters
    (IEEE, 2017) Arnedo Gil, Israel; Chudzik, Magdalena; Percaz Ciriza, Jon Mikel; Arregui Padilla, Iván; Teberio Berdún, Fernando; Benito Pertusa, David; Lopetegui Beregaña, José María; Gómez Laso, Miguel Ángel; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa
    In this paper, we propose a novel synthesis strategy for the design of one dimensional electromagnetic bandgap (1- D-EBG) structures where all the performance parameters of these devices can fully be controlled, i.e., the central frequency of the forbidden band, its attenuation level and bandwidth, and the ripple level at the passbands. The novel synthesis strategy employs a new inverse-scattering technique to accurately synthesize the 1-D-EBG structure, targeting a properly interpolated version of a classical periodic filter fulfilling the required frequency specifications. The new inverse-scattering technique follows a continuous layer peeling approach and relies on the coupled-mode theory to precisely model the microwave structures. Telecommunication and radar systems, as well as material characterization devices, will be profited by this proposal with which enhanced filters, sensors, power dividers, couplers, mixers, oscillators, and amplifiers can be designed in many different technologies. As a proof of concept, a 1-D-EBG structure in microstrip technology with a single forbidden band (free of spurious stopband replicas), with attenuation level of 30 dB, fractional bandwidth larger than 100%, and return loss level at the passbands of 20 dB, has been designed and fabricated. The measurements obtained are in very good agreement with the simulations and target specifications, being free of spurious replicas up to the 15th harmonic, showing the robustness and very good performance of the novel design strategy proposed.
  • PublicationOpen Access
    Integrating multiple stubs in stepped-impedance filter aiming for high selectivity
    (IET, 2022) Sami, Abdul; Gómez Laso, Miguel Ángel; Lopetegui Beregaña, José María; Arnedo Gil, Israel; Calero Fernández, Ibai; Teberio Berdún, Fernando; Martín Iglesias, Petronilo; Benito Pertusa, David; Arregui Padilla, Iván; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación
    A design technique to include multiple and fully-controlled transmission zeros (TZs) in the frequency response of rectangular waveguide commensurate-line stepped-impedance filters is presented in this letter. These bandpass filters (BPFs) are known for having reduced sensitivities against manufacturing inaccuracies and are composed of multiple waveguide sections. In order to improve their selectivity, 3λg/4 and λg/4-stubs are included to create multiple TZs around the passband. The proposed technique allows us to add multiple stubs in a single section and, therefore, only minor adjustments in the affected part of the filter are required, which simplifies the overall design process. The technique has been verified with a design example with four TZs (two on each side) near the passband.
  • PublicationOpen Access
    High-power filter design in waveguide technology: future generation of waveguide satellite filters in payloads handling increasing bit rates and numbers of channels
    (IEEE, 2020) Arregui Padilla, Iván; Teberio Berdún, Fernando; Arnedo Gil, Israel; Percaz Ciriza, Jon Mikel; Martín Iglesias, Petronilo; Lopetegui Beregaña, José María; Gómez Laso, Miguel Ángel; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    To design a filter for a particular application, many issues must first be considered. Which technology will be the most convenient? What design technique will provide better results for a particular set of frequency specifications? Once the device has been designed, will it fulfill all of the (not only electrical) requirements? It is not always easy to answer such questions in advance. In this article, we try to shed some light on these questions when our aim is the design of filters for high-power operation.
  • PublicationOpen Access
    Integración de múltiples stubs en filtros de saltos de impedancias de alta selectividad
    (URSI, 2023) Gómez Laso, Miguel Ángel; Sami, Abdul; Lopetegui Beregaña, José María; Martín Iglesias, Petronilo; Álvarez Botero, Germán Andrés; Pons Abenza, Alejandro; Arregui Padilla, Iván; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación
    Rectangular waveguide commensurate-line stepped-impedance bandpass filters have been shown to have an increased fabrication robustness using conventional CNC milling. In this paper, their frequency response is improved by adding multiple transmission zeros at fully-controlled positions around the passband. The technique starts with the design of the filter without transmission zeros and only requires that one of the filter sections is slightly redesigned, while the rest keep unaltered, when lambda_g/¿¿ and 3*lambda_g/¿¿ stubs are included in the section to increase the overall filter selectivity around the passband. The design example is a 7th-order Chebyshev bandpass filter in Ku-band.
  • PublicationOpen Access
    W-band filtering antenna based on a slot array and stacked coupled resonators using gap waveguide technology
    (IEEE, 2024) Santiago Arriazu, David; Fang, Mu; Zaman, Ashraf Uz; Gómez Laso, Miguel Ángel; Lopetegui Beregaña, José María; Arregui Padilla, Iván; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Institute of Smart Cities - ISC
    This letter proposes a new design approach for filtering antennas. The novel matching reflection coefficient based method allows the integration of filters and antennas without compromising the frequency behavior of either of these components. Moreover, this integration is done avoiding the need of lengthy optimization processes and provides a high degree of flexibility in the types of antennas that can be used. In order to validate it, two examples are provided. In both cases, a 4 th -order Chebyshev bandpass filter at 101.5 GHz implemented in stacked groove gap waveguide (GGW) configuration is used, firstly along with a single aperture antenna and, subsequently, with a slotted ridge gap waveguide (RGW) array. This second example has been manufactured to demonstrate the usefulness of the new design methodology. Excellent measured performance has been obtained for a filtering antenna at W-band for the first time.
  • PublicationOpen Access
    Synthesis of rectangular waveguide filters with smooth profile oriented to direct metal additive manufacturing
    (IEEE, 2023) Percaz Ciriza, Jon Mikel; Hussain, Jabir; Arregui Padilla, Iván; Teberio Berdún, Fernando; Benito Pertusa, David; Martín Iglesias, Petronilo; Arnedo Gil, Israel; Gómez Laso, Miguel Ángel; Lopetegui Beregaña, José María; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute of Smart Cities - ISC; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    In this paper, a novel design method for rectangular waveguide filters intended for fabrication using direct metal additive manufacturing is proposed. The synthesized filters will feature a smooth profile that allows us to fabricate them orienting the filter propagation axis in the vertical building direction, achieving an optimum configuration for direct metal additive manufacturing fabrication. The novel design method is valid for any all-pole transfer function, which is initially implemented with a commensurate-line distributed unit element prototype. The impulse response of that initial prototype is then properly interpolated to obtain the target response for a smooth-profiled filter with similar length and profile excursion. Finally, the target impulse response just generated is implemented in rectangular waveguide technology employing a novel inverse scattering synthesis technique that relies on the coupled-mode theory to model the electromagnetic behavior of the waveguide filter. The novel inverse scattering synthesis technique is general and also valid for the case of filters with very high rejection levels, which is of great relevance in rectangular waveguide technology. A Ku-band low-pass filter with stringent satellite specifications is designed using the proposed method, fabricated by means of a direct metal additive manufacturing technique, and measured with a vector network analyzer. A very good agreement is achieved between the simulated and measured results, fulfilling the required specifications and demonstrating the feasibility and performance of the novel design method.
  • PublicationOpen Access
    Improvement of corona breakdown threshold (peak power handling) in smooth-profiled microstrip filters
    (2022) Ahmad, Jamil; Hussain, Jabir; Arregui Padilla, Iván; Martín Iglesias, Petronilo; Arnedo Gil, Israel; Gómez Laso, Miguel Ángel; Lopetegui Beregaña, José María; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute of Smart Cities - ISC; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    In this paper, the PPHCs of two filter design techniques, stepped-impedance (SI) and smooth-profile (SP), are presented for four design prototypes. Smooth-profiled filters feature smooth variations in the characteristic impedance profile, avoiding sharp edges, which accumulate electric fields. The absence of sharp edges in SP reduces the voltage magnification factor, which in turn improves the PPHC of the filter. The phenomenon of electric fields accumulation at the sharp corners of the SI filters is presented and compared with smooth transitions in SP filters. Furthermore, 1D graphs of electric field intensity are presented along the strip contour of the microstrip lines. Finally, SPARK3D results clearly demonstrate that SP filters can handle higher peak powers than their SI counterparts between critical pressure and ambient pressure, for all the studied designs.
  • PublicationOpen Access
    Metal 3D printing for RF/microwave high-frequency parts
    (Springer, 2022) Martín Iglesias, Petronilo; Gómez Laso, Miguel Ángel; Lopetegui Beregaña, José María; Teberio Berdún, Fernando; Arregui Padilla, Iván; Marechal, M.; Calves, P.; Hazard, M.; Pambaguian, L.; Brandao, A.; Rodríguez Castillo, S.; Martin, T.; Percaz Ciriza, Jon Mikel; Iza, V.; Martín-Iglesias, Santiago; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    Space Systems have been historically characterised by high performance, high reliability and high cost. Every new generation of space systems tends to improve performance, keep as much as possible reliability, speeding the lead time and lower the cost. Aggressive approach is nowadays followed by some of the players of the new space ecosystem where, for instance, reli- ability can be relaxed thanks for the in-orbit redundancy or robustness to failures by having a constellation with a high number of satellites. This push towards the technology and system limit requires to investigate new methods for the manufacturing of RF/Microwave parts. RF devices such as those based on waveguide structures, benefit from an additive manufacturing approach in terms of radio frequency (RF) performance and compactness. However each manufacturing approach comes with specific features and limitations which need to be well understood and, in some cases, even taking advantage of them. This paper provides a short review of some of the RF/Microwave parts already manufactured using this technology. The paper will focus mainly on metal 3D printing parts since this technology is, at the moment, well accepted by the space community.
  • PublicationOpen Access
    Diseño de filtro en guía de onda en banda W mediante guía multicapa con simetría glide
    (URSI, 2023) García-Martínez, Sergio; Santiago Arriazu, David; Tamayo-Domínguez, Adrián; Sánchez-Olivares, Pablo; Arregui Padilla, Iván; Lopetegui Beregaña, José María; Fernández González, J. M.; Gómez Laso, Miguel Ángel; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Institute of Smart Cities - ISC
    Este artículo presenta el diseño e implementación de un filtro paso banda de cuarto orden en tecnología de guía de onda multicapa a 100 GHz. Para evitar fugas de campo en las paredes de la guía y permitir la implementación del filtro en múltiples capas sin necesidad de contacto eléctrico, se ha utilizado una estructura periódica con agujeros y simetría de deslizamiento, con agujeros circulares, como una estructura de banda prohibida electromagnética (EBG). Se presenta un filtro robusto y compacto, capaz de mantener una buena respuesta en la banda para un amplio rango de entrehierro entre capas. Este enfoque permite la implementación de la estructura compleja del filtro en bandas milimétricas, ofreciendo alta precisión y facilidad de fabricación.
  • PublicationOpen Access
    Producing and exploiting simultaneously the forward and backward coupling in EBG-assisted microstrip coupled lines
    (IEEE, 2016) Percaz Ciriza, Jon Mikel; Chudzik, Magdalena; Arnedo Gil, Israel; Arregui Padilla, Iván; Teberio Berdún, Fernando; Gómez Laso, Miguel Ángel; Lopetegui Beregaña, José María; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa
    In this paper, a methodology is proposed for the design of EBG-assisted coupled line structures in microstrip technology, controlling independently the forward and backward coupling. It is based on the use of a single-frequency-tuned electromagnetic bandgap (EBG) structure to produce a single backward-coupled frequency band, in combination with the forward-coupled frequency bands produced by the difference between the even and odd mode propagation constants present in microstrip technology. Thus, the central frequency of the backward-coupled band is controlled by the period of the EBG structure, while the frequencies of the forward coupled bands are fixed by the length of the device. The rest of the frequencies go to the direct port giving rise to a device with the input port matched at all the frequencies and where the coupled bands are easily controllable by adjusting the corresponding design parameter. The novel methodology proposed has been successfully demonstrated by designing a triplexer intended for the GSM (900 MHz) and WLAN (2.4 GHz and 5.5 GHz) telecommunication bands.