Gómez Laso, Miguel Ángel
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Gómez Laso
First Name
Miguel Ángel
person.page.departamento
Ingeniería Eléctrica, Electrónica y de Comunicación
person.page.instituteName
ISC. Institute of Smart Cities
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
2 results
Search Results
Now showing 1 - 2 of 2
Publication Open Access High-power filter design in waveguide technology: future generation of waveguide satellite filters in payloads handling increasing bit rates and numbers of channels(IEEE, 2020) Arregui Padilla, Iván; Teberio Berdún, Fernando; Arnedo Gil, Israel; Percaz Ciriza, Jon Mikel; Martín Iglesias, Petronilo; Lopetegui Beregaña, José María; Gómez Laso, Miguel Ángel; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio IngeniaritzarenTo design a filter for a particular application, many issues must first be considered. Which technology will be the most convenient? What design technique will provide better results for a particular set of frequency specifications? Once the device has been designed, will it fulfill all of the (not only electrical) requirements? It is not always easy to answer such questions in advance. In this article, we try to shed some light on these questions when our aim is the design of filters for high-power operation.Publication Open Access Chirping techniques to maximize the power-handling capability of harmonic waveguide low-pass filters(IEEE, 2016) Teberio Berdún, Fernando; Arregui Padilla, Iván; Gómez Torrent, Adrián; Arnedo Gil, Israel; Chudzik, Magdalena; Zedler, Michael; Goertz, Franz-Josef; Jost, Rolf; Lopetegui Beregaña, José María; Gómez Laso, Miguel Ángel; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta ElektronikoaA novel chirping technique is applied to the design of very high-power waveguide harmonic low-pass filters. The technique could be used, for instance, to avoid multipactor testing in multicarrier systems such as the output multiplexer of a communications satellite. The novel chirped filter shows low insertion loss, all higher order mode suppression, and broad stopband rejection up to the third harmonic. This paper focuses on the maximization of the filter power-handling capability without affecting its excellent frequency behavior. Given a certain frequency response, the E-plane mechanical gap of the structure and the length (in the propagation direction) of the waveguide sections between its constituent bandstop elements can be considered to improve the high-power behavior. However, the power performance may not be sufficient yet in some applications if we wish, for instance, multipactor testing to be avoided. This becomes feasible by chirping the length (in the propagation direction) of the bandstop elements. An example for Ku band is discussed for relevant frequency specifications. An improvement from ∼8 kW (non-chirped filter) to more than 100 kW (chirped filter) is obtained. As a reference, the equivalent waffle-iron filter can handle only 0.15 kW. Such high-power threshold levels have never been reported before for such kind of filters.