Person:
Gómez Laso, Miguel Ángel

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Gómez Laso

First Name

Miguel Ángel

person.page.departamento

ORCID

0000-0003-1371-0610

person.page.upna

2553

Name

Search Results

Now showing 1 - 2 of 2
  • PublicationOpen Access
    Robust design of 3D-printed W-band bandpass filters using gap waveguide technology
    (Springer, 2022) Santiago Arriazu, David; Tamayo-Domínguez, Adrián; Gómez Laso, Miguel Ángel; Lopetegui Beregaña, José María; Fernández-González, José Manuel; Martínez, Ramón; Arregui Padilla, Iván; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    In this paper, a W-band 3D-printed bandpass filter is proposed. The use of higher-order TE10n modes in groove gap waveguide (GGW) technology is evaluated in order to alleviate the manufacturing requirements. In addition to the use of higher-order modes, the coupling between them is analyzed in detail to improve the overall fabrication robustness of the component. This allows the implementation of narrow-band filters operating at millimeter-wave frequency bands (or above), which usually demand complex manufacturing techniques to provide the high accuracy required for this kind of devices. In order to show the applicability of the proposed method, a narrow-band 5th-order Chebyshev bandpass filter centered at 94 GHz, which can be easily fabricated by state-of-the-art stereolithographic (SLA) 3D-printing techniques followed by silver coating, is shown. Excellent measured performance has been obtained.
  • PublicationOpen Access
    Novel design method for millimeter-wave gap waveguide low-pass filters using advanced manufacturing techniques
    (IEEE, 2023) Santiago Arriazu, David; Gómez Laso, Miguel Ángel; Lopetegui Beregaña, José María; Arregui Padilla, Iván; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute of Smart Cities - ISC; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    In this paper, a groove gap waveguide (GGW) low-pass filter is proposed for the first time. Gap waveguide technology represents an interesting alternative as a low-loss, cost-effective, high- performance transmission line and packaging solution for microwave and millimeter-wave systems. This technology may exhibit a frequency behavior similar to rectangular waveguide but with some advantages such as the no need of electrical contact between the upper and lower plates of the GGW, making it an attractive alternative in the design of satellite devices at high frequencies. However, all the previous literature focused on band-pass filters, while design methods for GGW low-pass filters have not been reported. Furthermore, in this paper a new manufacturing approach is proposed and its performance has been compared with traditional methods such as Computer Numerical Control (CNC) milling. The new approach relies on the Selective Laser Melting (SLM)-3D printing of the filter followed by a post-processing step, in which it is partially mechanized using CNC milling to improve the surface finish. Measurements of the manufactured prototypes are also included to compare both techniques at millimeter-waves, showing the advantages of the new fabrication method and the excellent agreement with the simulations.