Baroja Fernández, Edurne

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Baroja Fernández

First Name

Edurne

person.page.departamento

Producción Agraria

person.page.instituteName

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 4 of 4
  • PublicationOpen Access
    Ectopic expression of the AtCDF1 transcription factor in potato enhances tuber starch and amino acid contents and yield under open field conditions
    (Frontiers Media, 2023) Carrillo, Laura; Baroja Fernández, Edurne; Renau Morata, Begoña; Muñoz Pérez, Francisco José; Canales, Javier; Ciordia, Sergio; Yang, Lu; Sánchez López, Ángela María; Nebauer, Sergio G.; Ceballos, Mar G.; Vicente-Carbajosa, Jesús; Molina, Rosa V.; Pozueta Romero, Javier; Medina, Joaquín; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua
    Introduction: cycling Dof transcription factors (CDFs) have been involved in different aspects of plant growth and development. In Arabidopsis and tomato, one member of this family (CDF1) has recently been associated with the regulation of primary metabolism and abiotic stress responses, but their roles in crop production under open field conditions remain unknown. Methods: in this study, we compared the growth, and tuber yield and composition of plants ectopically expressing the CDF1 gene from Arabidopsis under the control of the 35S promoter with wild-type (WT) potato plants cultured in growth chamber and open field conditions. Results: in growth chambers, the 35S::AtCDF1 plants showed a greater tuber yield than the WT by increasing the biomass partition for tuber development. Under field conditions, the ectopic expression of CDF1 also promoted the sink strength of the tubers, since 35S::AtCDF1 plants exhibited significant increases in tuber size and weight resulting in higher tuber yield. A metabolomic analysis revealed that tubers of 35S::AtCDF1 plants cultured under open field conditions accumulated higher levels of glucose, starch and amino acids than WT tubers. A comparative proteomic analysis of tubers of 35S::AtCDF1 and WT plants cultured under open field conditions revealed that these changes can be accounted for changes in the expression of proteins involved in energy production and different aspects of C and N metabolism. Discussion: The results from this study advance our collective understanding of the role of CDFs and are of great interest for the purposes of improving the yield and breeding of crop plants.
  • PublicationOpen Access
    Cell-free microbial culture filtrates as candidate biostimulants to enhance plant growth and yield and activate soil- and plant-associated beneficial microbiota
    (Frontiers Media, 2022) León Morcillo, Rafael Jorge; Baroja Fernández, Edurne; López-Serrano, Lidia; Leal-López, Jesús; Muñoz Pérez, Francisco José; Bahaji, Abdellatif; Férez-Gómez, Alberto; Pozueta Romero, Javier; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua
    In this work we compiled information on current and emerging microbial-based fertilization practices, especially the use of cell-free microbial culture filtrates (CFs), to promote plant growth, yield and stress tolerance, and their effects on plant-associated beneficial microbiota. In addition, we identified limitations to bring microbial CFs to the market as biostimulants. In nature, plants act as metaorganisms, hosting microorganisms that communicate with the plants by exchanging semiochemicals through the phytosphere. Such symbiotic interactions are of high importance not only for plant yield and quality, but also for functioning of the soil microbiota. One environmentally sustainable practice to increasing crop productivity and/or protecting plants from (a)biotic stresses while reducing the excessive and inappropriate application of agrochemicals is based on the use of inoculants of beneficial microorganisms. However, this technology has a number of limitations, including inconsistencies in the field, specific growth requirements and host compatibility. Beneficial microorganisms release diffusible substances that promote plant growth and enhance yield and stress tolerance. Recently, evidence has been provided that this capacity also extends to phytopathogens. Consistently, soil application of microbial cell-free culture filtrates (CFs) has been found to promote growth and enhance the yield of horticultural crops. Recent studies have shown that the response of plants to soil application of microbial CFs is associated with strong proliferation of the resident beneficial soil microbiota. Therefore, the use of microbial CFs to enhance both crop yield and stress tolerance, and to activate beneficial soil microbiota could be a safe, efficient and environmentally friendly approach to minimize shortfalls related to the technology of microbial inoculation. In this review, we compile information on microbial CFs and the main constituents (especially volatile compounds) that promote plant growth, yield and stress tolerance, and their effects on plant-associated beneficial microbiota. In addition, we identify challenges and limitations for their use as biostimulants to bring them to the market and we propose remedial actions and give suggestions for future work.
  • PublicationOpen Access
    Enhanced yield of pepper plants promoted by soil application of volatiles from cell-free fungal culture filtrates is associated with activation of the beneficial soil microbiota
    (Frontiers Media, 2021) Baroja Fernández, Edurne; Almagro Zabalza, Goizeder; Sánchez López, Ángela María; Bahaji, Abdellatif; Gámez Arcas, Samuel; Diego, Nuria de; Dolezal, Karel; Muñoz Pérez, Francisco José; Climent Sanz, Eric; Pozueta Romero, Javier; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua; Gobierno de Navarra / Nafarroako Gobernua
    Plants communicate with microorganisms by exchanging chemical signals throughout the phytosphere. Such interactions are important not only for plant productivity and fitness, but also for terrestrial ecosystem functioning. It is known that beneficial microorganisms emit diffusible substances including volatile organic compounds (VOCs) that promote growth. Consistently, soil application of cell-free culture filtrates (CF) of beneficial soil and plant-associated microorganisms enhances plant growth and yield. However, how this treatment acts in plants and whether it alters the resident soil microbiota, are largely unknown. In this work we characterized the responses of pepper (Capsicum annuum L.) plants cultured under both greenhouse and open field conditions and of soil microbiota to soil application of CFs of beneficial and phytopathogenic fungi. To evaluate the contribution of VOCs occurring in the CFs to these responses, we characterized the responses of plants and of soil microbiota to application of distillates (DE) of the fungal CFs. CFs and their respective DEs contained the same potentially biogenic VOCs, and application of these extracts enhanced root growth and fruit yield, and altered the nutritional characteristics of fruits. High-throughput amplicon sequencing of bacterial 16S and fungal ITS rRNA genes of the soil microbiota revealed that the CF and DE treatments altered the microbial community compositions, and led to strong enrichment of the populations of the same beneficial bacterial and fungal taxa. Our findings show that CFs of both beneficial and phytopathogenic fungi can be used as biostimulants, and provide evidence that VOCs occurring in the fungal CFs act as mediators of the plants’ responses to soil application of fungal CFs through stimulation of the beneficial soil microbiota.
  • PublicationOpen Access
    Glucose-6-P/phosphate translocator2 mediates the phosphoglucose-isomerase1-independent response to microbial volatiles
    (Oxford University Press, 2022) Gámez Arcas, Samuel; Muñoz, Francisco José; Ricarte Bermejo, Adriana; Sánchez López, Ángela María; Baslam, Marouane; Baroja Fernández, Edurne; Bahaji, Abdellatif; Almagro Zabalza, Goizeder; Diego, Nuria de; Dolezal, Karel; Novák, Ondrej; Leal-López, Jesús; León Morcillo, Rafael Jorge; Castillo, Araceli G.; Pozueta Romero, Javier; Agronomía, Biotecnología y Alimentación; Agronomia, Bioteknologia eta Elikadura
    In Arabidopsis (Arabidopsis thaliana), the plastidial isoform of phosphoglucose isomerase (PGI1) mediates photosynthesis, metabolism, and development, probably due to its involvement in the synthesis of isoprenoid-derived signals in vascular tissues. Microbial volatile compounds (VCs) with molecular masses of 545 Da promote photosynthesis, growth, and starch overaccumulation in leaves through PGI1-independent mechanisms. Exposure to these compounds in leaves enhances the levels of GLUCOSE-6-PHOSPHATE/PHOSPHATE TRANSLOCATOR2 (GPT2) transcripts. We hypothesized that the PGI1-independent response to microbial volatile emissions involves GPT2 action. To test this hypothesis, we characterized the responses of wild-type (WT), GPT2-null gpt2-1, PGI1-null pgi1-2, and pgi1-2gpt2-1 plants to small fungal VCs. In addition, we characterized the responses of pgi1-2gpt2-1 plants expressing GPT2 under the control of a vascular tissue- and root tip-specific promoter to small fungal VCs. Fungal VCs promoted increases in growth, starch content, and photosynthesis in WT and gpt2-1 plants. These changes were substantially weaker in VC-exposed pgi1-2gpt2-1 plants but reverted to WT levels with vascular and root tip-specific GPT2 expression. Proteomic analyses did not detect enhanced levels of GPT2 protein in VC-exposed leaves and showed that knocking out GPT2 reduced the expression of photosynthesis-related proteins in pgi1-2 plants. Histochemical analyses of GUS activity in plants expressing GPT2-GUS under the control of the GPT2 promoter showed that GPT2 is mainly expressed in root tips and vascular tissues around hydathodes. Overall, the data indicated that the PGI1-independent response to microbial VCs involves resetting of the photosynthesis-related proteome in leaves through long-distance GPT2 action.