Williams, Trevor

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Williams

First Name

Trevor

person.page.departamento

Producción Agraria

person.page.instituteName

ORCID

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 10 of 21
  • PublicationOpen Access
    Virus entry or the primary infection cycle are not the principal determinants of host specificity of Spodoptera spp. nucleopolyhedroviruses
    (Microbiology Society, 2004-10-01) Simón de Goñi, Oihane; Williams, Trevor; López Ferber, Miguel; Caballero Murillo, Primitivo; Producción Agraria; Nekazaritza Ekoizpena
    The multicapsid nucleopolyhedroviruses (NPVs) of Spodoptera exigua (SeMNPV), Spodoptera frugiperda (SfMNPV), and Spodoptera littoralis (SpliNPV) are genetically similar (78% similarity) but differ in their degree of host specificity. Infection by each of the three NPVs in these three Spodoptera host species was determined by oral inoculation of larvae with occlusion bodies (OBs) or intrahaemocoelic injection with occlusion derived virions (ODVs). RT-PCR analysis of total RNA from inoculated insects, targeted at immediate early (ie-0), early (egt, DNA polymerase), late (chitinase) and very late genes (polyhedrin), indicated that each of the NPVs initiated an infection in all three host species tested. SpliMNPV produced a fatal NPV disease in both heterologous hosts, S. frugiperda and S. exigua, by oral inoculation or injection. SfMNPV was lethal to heterologous hosts, S. exigua and S. littoralis, but infected larvae did not melt and disintegrate, and progeny OBs were not observed. SeMNPV was able to replicate in heterologous hosts and all genes required for replication were present in the genome, as the virus primary infection cycle was observed. However, gene expression was significantly lower in heterologous hosts. SeMNPV pathogenesis in S. frugiperda and S. littoralis was blocked at the haemocoel transmission stage and very nearly cleared. SeMNPV mixtures with SpliMNPV or SfMNPV did not extend the host range of SeMNPV; in all cases, only the homologous virus was observed to proliferate. It is concluded that entry and the primary virus infection cycle are not the only, or the major determinants, for SeMNPV infection of heterologous Spodoptera species.
  • PublicationOpen Access
    Defective or effective?: mutualistic interactions between virus genotypes
    (Royal Society, 2003-11-07) López Ferber, Miguel; Simón de Goñi, Oihane; Williams, Trevor; Caballero Murillo, Primitivo; Producción Agraria; Nekazaritza Ekoizpena
    Defective viruses lack genes essential for survival but they can co-infect with complete virus genotypes and use gene products from the complete genotype for their replication and transmission. As such, they are detrimental to the fitness of complete genotypes. Here, we describe a mutualistic interaction between genotypes of an insect baculovirus (nucleopolyhedrovirus of Spodoptera frugiperda (Lepidoptera)) that increases the pathogenicity of the viral population. Mixtures of a complete genotype able to be transmitted orally and a deletion mutant unable to be transmitted orally resulted in a phenotype of increased pathogenicity. Because the infectiousness of mixed genotype infections was greater than that of single genotype infections, we predict that the transmissibility of mixed genotype occlusion bodies will be greater than that of any of their single genotype components. Such interactions will be subject to frequency-dependent selection and will influence the impact of these viruses on insect population dynamics and their efficacy as biological insecticides.
  • PublicationOpen Access
    Physical and partial genetic map of Spodoptera frugiperda nucleopolyhedrovirus (SfMNPV) genome
    (Springer, 2005) Simón de Goñi, Oihane; Chevenet, François; Williams, Trevor; Caballero Murillo, Primitivo; López Ferber, Miguel; Producción Agraria; Nekazaritza Ekoizpena
    A Nicaraguan isolate of Spodoptera frugiperda multicapsid nucleopolyhedrovirus (SfMNPV) is undergoing field trials for control of this pest in the Americas. This isolate is composed of multiple genotypes, some of which are deletion mutants. Identification of the genetic changes in deleted genotypes cannot be accomplished without the construction of a detailed physical map. In the present study, combinations of restriction endonuclease analysis and Southern blot analysis was performed. This map was refined by sequencing the termini of cloned restriction fragments. The SfMNPV genome was estimated to be 129.3 kb, 8 kb larger than the previously characterized Sf-2 variant from the United States, due to a deletion between 14.8 and 21.0 m.u. in the physical map described in this study. A total of 27.92 kb were sequenced, which represented 21.5% of the whole genome and included 38 ORFs. Comparison with other sequenced baculoviruses revealed that SfMNPV displayed the highest sequence identity (66%) and gene arrangement (78%) with Spodoptera exigua MNPV, sharing 36 putative ORFs. In addition, the genome organization was similar to that of SeMNPV, with minor differences. Phylogenetic analysis confirmed the close relatedness between SeMNPV and SfMNPV, suggesting they evolved from a common ancestor.
  • PublicationOpen Access
    Nucleopolyhedrovirus coocclusion technology: a new concept in the development of biological insecticides
    (Frontiers Media, 2022) Williams, Trevor; López Ferber, Miguel; Caballero Murillo, Primitivo; Institute for Multidisciplinary Research in Applied Biology - IMAB
    Nucleopolyhedroviruses (NPV, Baculoviridae) that infect lepidopteran pests have an established record as safe and effective biological insecticides. Here, we describe a new approach for the development of NPV-based insecticides. This technology takes advantage of the unique way in which these viruses are transmitted as collective infectious units, and the genotypic diversity present in natural virus populations. A ten-step procedure is described involving genotypic variant selection, mixing, coinfection and intraspecific coocclusion of variants within viral occlusion bodies. Using two examples, we demonstrate how this approach can be used to produce highly pathogenic virus preparations for pest control. As restricted host range limits the uptake of NPV-based insecticides, this technology has recently been adapted to produce custom-designed interspecific mixtures of viruses that can be applied to control complexes of lepidopteran pests on particular crops, as long as a shared host species is available for virus production. This approach to the development of NPV-based insecticides has the potential to be applied across a broad range of NPV-pest pathosystems.
  • PublicationOpen Access
    Superinfection exclusion in alphabaculovirus infections is concomitant with actin reorganization
    (American Society for Microbiology, 2014) Beperet Arive, Inés; Irons, Sarah L.; Simón de Goñi, Oihane; King, Linda A.; Williams, Trevor; Possee, Robert D.; López Ferber, Miguel; Caballero Murillo, Primitivo; Nekazaritza Ekoizpena; Producción Agraria; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua
    Superinfection exclusion is the ability of an established virus to interfere with a second virus infection. This effect was studied in vitro during lepidopteran-specific nucleopolyhedrovirus (genus Alphabaculovirus, family Baculoviridae) infection. Homologous interference was detected in Sf9 cells sequentially infected with two genotypes of Autographa californica multiple nucleopolyhedrovirus (AcMNPV), each one expressing a different fluorescent protein. This was a progressive process in which a sharp decrease in the signs of infection caused by the second virus was observed, affecting not only the number of coinfected cells observed, but also the level of protein expression due to the second virus infection. Superinfection exclusion was concurrent with reorganization of cytoplasmic actin to F-actin in the nucleus, followed by budded virus production (16 to 20 h postinfection). Disruption of actin filaments by cell treatment with cytochalasin D resulted in a successful second infection. Protection against heterologous nucleopolyhedrovirus infection was also demonstrated, as productive infection of Sf9 cells by Spodoptera frugiperda nucleopolyhedrovirus (SfMNPV) was inhibited by prior infection with AcMNPV, and vice versa. Finally, coinfected cells were observed following inoculation with mixtures of these two phylogenetically distant nucleopolyhedroviruses—AcMNPV and SfMNPV—but at a frequency lower than predicted, suggesting interspecific virus interference during infection or replication. The temporal window of infection is likely necessary to maintain genotypic diversity that favors virus survival but also permits dual infection by heterospecific alphabaculoviruses.
  • PublicationOpen Access
    Expression of a peroral infection factor determines pathogenicity and population structure in an insect virus
    (Public Library of Science, 2013) Simón de Goñi, Oihane; Williams, Trevor; Cerutti, Martine; Caballero Murillo, Primitivo; López Ferber, Miguel; Nekazaritza Ekoizpena; Producción Agraria; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua
    A Nicaraguan isolate of Spodoptera frugiperda multiple nucleopolyhedrovirus is being studied as a possible biological insecticide. This virus exists as a mixture of complete and deletion genotypes; the latter depend on the former for the production of an essential per os transmission factor (pif1) in coinfected cells. We hypothesized that the virus population was structured to account for the prevalence of pif1 defector genotypes, so that increasing the abundance of pif1 produced by a cooperator genotype in infected cells would favor an increased prevalence of the defector genotype. We tested this hypothesis using recombinant viruses with pif1 expression reprogrammed at its native locus using two exogenous promoters (egt, p10) in the pif2/pif1 intergenic region. Reprogrammed viruses killed their hosts markedly faster than the wild-type and rescue viruses, possibly due to an earlier onset of systemic infection. Group success (transmission) depended on expression of pif1, but overexpression was prejudicial to group-specific transmissibility, both in terms of reduced pathogenicity and reduced production of virus progeny from each infected insect. The presence of pif1-overproducing genotypes in the population was predicted to favor a shift in the prevalence of defector genotypes lacking pif1-expressing capabilities, to compensate for the modification in pif1 availability at the population level. As a result, defectors increased the overall pathogenicity of the virus population by diluting pif1 produced by overexpressing genotypes. These results offer a new and unexpected perspective on cooperative behavior between viral genomes in response to the abundance of an essential public good that is detrimental in excess.
  • PublicationOpen Access
    Genetic structure of a Spodoptera frugiperda nucleopolyhedrovirus population: high prevalence of deletion genotypes
    (American Society for Microbiology, 2004) Simón de Goñi, Oihane; Williams, Trevor; López Ferber, Miguel; Caballero Murillo, Primitivo; Producción Agraria; Nekazaritza Ekoizpena
    A Nicaraguan field isolate (SfNIC) of Spodoptera frugiperda nucleopolyhedrovirus was purified by plaque assay on Sf9 cells. Nine distinct genotypes, A to I, were identified by their restriction endonuclease profiles. Variant SfNIC-B was selected as the standard because its restriction profile corresponded to that of the wild-type isolate. Physical maps were generated for each of the variants. The differences between variants and the SfNIC-B standard were confined to the region between map units 9 and 32.5. This region included PstI-G, PstI-F, PstI-L, PstI-K and EcoRI-L fragments. Eight genotypes presented a deletion in their genome compared with SfNIC-B. Occlusion body-derived virions of SfNIC-C, -D and -G accounted for 41% of plaque-purified clones. These variants were not infectious per os but retained infectivity by injection into S. frugiperda larvae. Median 50% lethal concentration values for the other cloned genotypes were significantly higher than that of the wild type. The variants also differed in their speed of kill. Noninfectious variants SfNIC-C and -D lacked the pif and pif-2 genes. Infectivity was restored to these variants by plasmid rescue with a plasmid comprising both pif and pif-2. Transcription of an SfNIC-G gene was detected by reverse transcription-PCR in insects, but no fatal disease developed. Transcription was not detected in SfNIC-C or -D-inoculated larvae. We conclude that the SfNIC population presents high levels of genetic diversity, localized to a 17-kb region containing pif and pif-2, and that interactions among complete and deleted genotypic variants will likely influence the capacity of this virus to control insect pests.
  • PublicationOpen Access
    Stability of a Spodoptera frugiperda nucleopolyhedrovirus deletion recombinant during serial passage in insects
    (American Society for Microbiology, 2009) Simón de Goñi, Oihane; Williams, Trevor; Possee, Robert D.; López Ferber, Miguel; Caballero Murillo, Primitivo; Nekazaritza Ekoizpena; Producción Agraria; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua
    The stabilities of the Spodoptera frugiperda multiple nucleopolyhedrovirus (SfMNPV) complete genome bacmid (Sfbac) and a deletion recombinant (Sf29null) in which the Sf29 gene was replaced by a kanamycin resistance cassette were determined during sequential rounds of per os infection in insect larvae. The Sf29 gene is a viral factor that determines the number of virions in occlusion bodies (OBs). The Sf29null bacmid virus was able to recover the Sf29 gene during passage. After the third passage (P3) of Sf29null bacmid OBs, the population was observed to reach an equilibrium involving a mixture of those with a kanamycin resistance cassette and those with the Sf29 gene. The biological activity of Sf29null bacmid OBs at P3 was similar to that of Sfbac OBs. The recovered gene in the Sf29null virus was 98 to 100% homologous to the Sf29 genes of different SfMNPV genotypes. Reverse transcription-PCR analysis of uninoculated S. frugiperda larvae confirmed the expression of the SfMNPV ie-0 and Sf29 genes, indicating that the insect colony harbors a covert SfMNPV infection. Additionally, the nonessential bacterial artificial chromosome vector was spontaneously deleted from both viral genomes upon passage in insects.
  • PublicationOpen Access
    Gender-mediated differences in vertical transmission of a nucleopolyhedrovirus
    (Public Library of Science, 2013) Virto Garayoa, Cristina; Zárate Chaves, Carlos Andrés; López Ferber, Miguel; Murillo Pérez, Rosa; Caballero Murillo, Primitivo; Williams, Trevor; Nekazaritza Ekoizpena; Producción Agraria; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua
    With the development of sensitive molecular techniques for detection of low levels of asymptomatic pathogens, it becoming clear that vertical transmission is a common feature of some insect pathogenic viruses, and likely to be essential to virus survival when opportunities for horizontal transmission are unfavorable. Vertical transmission of Spodoptera exigua multiple nucleopolyhedrovirus (SeMNPV) is common in natural populations of S. exigua. To assess whether gender affected transgenerational virus transmission, four mating group treatments were performed using healthy and sublethally infected insects: i) healthy males (H=)6healthy females (HR); ii) infected males (I=)6healthy females (HR); iii) healthy males (H=)6infected females (IR) and iv) infected males (I=)6infected females (IR). Experimental adults and their offspring were analyzed by qPCR to determine the prevalence of infection. Both males and females were able to transmit the infection to the next generation, although female-mediated transmission resulted in a higher prevalence of infected offspring. Malemediated venereal transmission was half as efficient as maternally-mediated transmission. Egg surface decontamination studies indicated that the main route of transmission is likely transovarial rather than transovum. Both male and female offspring were infected by their parents in similar proportions. Incorporating vertically-transmitted genotypes into virusbased insecticides could provide moderate levels of transgenerational pest control, thereby extending the periods between bioinsecticide applications.
  • PublicationOpen Access
    Mixtures of complete and pif1- and pif2-deficient genotypes are required for increased potency of an insect nucleopolyhedrovirus
    (American Society for Microbiology, 2009) Clavijo Palacios, Gabriel; Williams, Trevor; Simón de Goñi, Oihane; Muñoz Labiano, Delia; Cerutti, Martine; López Ferber, Miguel; Caballero Murillo, Primitivo; Nekazaritza Ekoizpena; Producción Agraria; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua
    The insecticidal potency of a nucleopolyhedrovirus population (SfNIC) that infects Spodoptera frugiperda (Lepidoptera) is greater than the potency of any of the component genotypes alone. Occlusion bodies (OBs) produced in mixed infections comprising the complete genotype and a deletion genotype are as pathogenic as the natural population of genotypes from the field. To test whether this increased potency was due to the deletion or to some other characteristic of the deletion variant genome, we used the SfNIC-B genome to construct a recombinant virus (SfNIC-BΔ16K) with the same 16.4-kb deletion as that observed in SfNIC-C and another recombinant (SfNIC-BΔpifs) with a deletion encompassing two adjacent genes (pif1 and pif2) that are essential for transmission per os. Mixtures comprising SfNIC-B and SfNIC-B 16K in OB ratios that varied between 10:90 and 90:10 were injected into insects, and the progeny OBs were fed to larvae in an insecticidal potency assay. A densitometric analysis of PCR products indicated that SfNIC-B was generally more abundant than expected in mixtures based on the proportions of OBs used to produce the inocula. Mixtures derived from OB ratios of 10, 25, or 50% of SfNIC-BΔ16K and the corresponding SfNIC-B proportions showed a significant increase in potency compared to SfNIC-B alone. The results of potency assays with mixtures comprising various proportions of SfNIC-B plus SfNIC-BΔpifs were almost identical to the results observed with SfNICB 16K, indicating that deletion of the pif gene region was responsible for the increased potency observed in mixtures of SfNIC-B and each deletion recombinant virus. Subsequently, mixtures produced from OB ratios involving 10 or 90% of SfNIC-BΔ16K with the corresponding proportions of SfNIC-B were subjected to four rounds of per os transmission in larvae. The composition of each experimental mixture rapidly converged to a common equilibrium with a genotypic composition of ~85% SfNIC-B plus 15% SfNIC-BΔ16K. Nearly identical results were observed in peroral-passage experiments involving mixtures of SfNIC-B plus SfNICBΔpifs. We conclude that (i) the deletion of the pif1 and pif2 region is necessary and sufficient to explain the increased potency observed in mixtures of complete and deletion genotypes and (ii) viral populations with decreased ratios of pif1- and pif2-deficient genotypes in the virus population increase the potency of genotypic mixtures and are likely to positively influence the transmission of this pathogen.