Williams, Trevor
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Williams
First Name
Trevor
person.page.departamento
Producción Agraria
person.page.instituteName
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
14 results
Search Results
Now showing 1 - 10 of 14
Publication Open Access Effect of optical brighteners on the insecticidal activity of a nucleopolyhedrovirus in three instars of Spodoptera frugiperda(Blackwell Science, 2003-10-17) Martínez Castillo, Ana Mabel; Simón de Goñi, Oihane; Williams, Trevor; Caballero Murillo, Primitivo; Producción Agraria; Nekazaritza EkoizpenaCertain optical brighteners are effective UV protectants, and can improve the insecticidal activity of baculoviruses. We evaluated the effect of 10 optical brighteners, from four chemically different groups, on the insecticidal activity of a nucleopolyhedrovirus (SfMNPV) in third instar Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae). The most effective optical brighteners were Blankophor BBH and Calcofluor M2R, both of which are stilbenes. The distyryl-biphenyl derivative, Tinopal CBS, had no effect, whereas the stilbenes, Blankophor CLE and Leucophor SAC and the styryl-benzenic derivative, Blankophor ER, resulted in a decrease in virus induced mortality compared to larvae infected with SfMNPV alone. Mixtures of SfMNPV + 0.1% Calcofluor M2R had relative potencies of 2.7, 6.5, and 61.6 in the second, third, and fourth instars, respectively. The mean time to death differed with instar, but was not affected by the addition of 0.1% Calcofluor M2R. Analysis of published studies indicated that the concentration of Calcofluor M2R-related stilbenes was positively correlated with the relative potency observed in mixtures with homologous NPVs. The average magnitude of optical brightener activity did not differ significantly between early instars of 10 species of Lepidoptera. We conclude that virus formulations containing optical brighteners may be valuable for control of late instar lepidopteran pests.Publication Open Access Population genetic structure determine the virulence and transmissibility of Spodoptera frugiperda multiple necleopolyhedrovirus(Elsevier, 2007-12-28) Simón de Goñi, Oihane; Williams, Trevor; López Ferber, Miguel; Taulemesse, Jean-Marie; Caballero Murillo, Primitivo; Producción Agraria; Nekazaritza Ekoizpena; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako InstitutuaA Nicaraguan isolate of Spodoptera frugiperda multiple nucleopolyhedrovirus (SfNIC) survives as a complex mixture of genotypes (named A to I). The speed of kill, time-mortality distribution, and occlusion body (OB) production of single genotypes (A, B and F) and co-occluded mixtures of genotypes, in a 75% + 25% ratio, were compared to determine the contribution of each genotype to the transmissibility of the viral population. Pure genotypes differed markedly in their speed of kill in second instar S. frugiperda. The speed of kill of SfNIC was attenuated compared to that of the dominant genotype B, indicating that interactions involving two or more genotypes likely determine host killing traits in the virus population. Genotypes A, F and defective genotype C, had no significant effects on the distribution of insect deaths over time when present as minority components in mixtures comprising 75% of genotype B. Similarly, the mortality pattern over time of insects infected by genotype F, the fastest-killing genotype tested, was not affected by the presence of genotypes A or C. Semi-quantitative PCR studies indicated that the genetic composition did not differ significantly between SfNIC-infected insects that died soon (67 h) or late (139 h) after inoculation, suggesting that stability in genotypic composition is important for virus survival. Median OB production per insect was correlated with mean time to death so that attenuated speed of kill of SfNIC resulted in high OB yields. We conclude that (i) minority genotypes play a functional role in determining the timing of mortality of infected hosts and (ii) the genotypic structure of the virus population is stably maintained to maximize the likelihood of survival.Publication Open Access Stability of a Spodoptera frugiperda nucleopolyhedrovirus deletion recombinant during serial passage in insects(American Society for Microbiology, 2009) Simón de Goñi, Oihane; Williams, Trevor; Possee, Robert D.; López Ferber, Miguel; Caballero Murillo, Primitivo; Nekazaritza Ekoizpena; Producción Agraria; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako InstitutuaThe stabilities of the Spodoptera frugiperda multiple nucleopolyhedrovirus (SfMNPV) complete genome bacmid (Sfbac) and a deletion recombinant (Sf29null) in which the Sf29 gene was replaced by a kanamycin resistance cassette were determined during sequential rounds of per os infection in insect larvae. The Sf29 gene is a viral factor that determines the number of virions in occlusion bodies (OBs). The Sf29null bacmid virus was able to recover the Sf29 gene during passage. After the third passage (P3) of Sf29null bacmid OBs, the population was observed to reach an equilibrium involving a mixture of those with a kanamycin resistance cassette and those with the Sf29 gene. The biological activity of Sf29null bacmid OBs at P3 was similar to that of Sfbac OBs. The recovered gene in the Sf29null virus was 98 to 100% homologous to the Sf29 genes of different SfMNPV genotypes. Reverse transcription-PCR analysis of uninoculated S. frugiperda larvae confirmed the expression of the SfMNPV ie-0 and Sf29 genes, indicating that the insect colony harbors a covert SfMNPV infection. Additionally, the nonessential bacterial artificial chromosome vector was spontaneously deleted from both viral genomes upon passage in insects.Publication Open Access Functional importance of deletion mutant genotypes in an insect nucleopolyhedrovirus population(American Society for Microbiology, 2005) Simón de Goñi, Oihane; Williams, Trevor; López Ferber, Miguel; Caballero Murillo, Primitivo; Producción Agraria; Nekazaritza EkoizpenaA Nicaraguan isolate of a nucleopolyhedrovirus (SfNIC) that attacks the fall armyworm, Spodoptera frugiperda, survives as a mixture of nine genotypes (SfNIC A to I) that all present genomic deletions, except variant B (complete genotype). Sequencing of cloned restriction fragments revealed that genotypic variants lack between 5 and 16 of the open reading frames present in a contiguous sequence of 18 kb of the SfNIC genome. The absence of oral infectivity of SfNIC-C and -D variants is related to the deletion of the pif and/or pif-2 gene, while that of SfNIC-G remains unexplained. The presence of open reading frame 10, homolog of Se030, also appeared to influence pathogenicity in certain variants. Previous studies demonstrated a significant positive interaction between genotypes B and C. We compared the median lethal concentration of single genotypes (A, B, C, D, and F) and co-occluded genotype mixtures (B+A, B+D, B+F, A+C, and F+C in a 3:1 ratio). Mixtures B+A and B+D showed increased pathogenicity, although only B+D restored the activity of the mixture to that of the natural population. Mixtures of two deletion variants (A+C and F+C) did not show interactions in pathogenicity. We conclude that minority genotypes have an important influence on the overall pathogenicity of the population. These results clearly demonstrate the value of retaining genotypic diversity in virus-based bioinsecticides.Publication Open Access Genetic structure of a Spodoptera frugiperda nucleopolyhedrovirus population: high prevalence of deletion genotypes(American Society for Microbiology, 2004) Simón de Goñi, Oihane; Williams, Trevor; López Ferber, Miguel; Caballero Murillo, Primitivo; Producción Agraria; Nekazaritza EkoizpenaA Nicaraguan field isolate (SfNIC) of Spodoptera frugiperda nucleopolyhedrovirus was purified by plaque assay on Sf9 cells. Nine distinct genotypes, A to I, were identified by their restriction endonuclease profiles. Variant SfNIC-B was selected as the standard because its restriction profile corresponded to that of the wild-type isolate. Physical maps were generated for each of the variants. The differences between variants and the SfNIC-B standard were confined to the region between map units 9 and 32.5. This region included PstI-G, PstI-F, PstI-L, PstI-K and EcoRI-L fragments. Eight genotypes presented a deletion in their genome compared with SfNIC-B. Occlusion body-derived virions of SfNIC-C, -D and -G accounted for 41% of plaque-purified clones. These variants were not infectious per os but retained infectivity by injection into S. frugiperda larvae. Median 50% lethal concentration values for the other cloned genotypes were significantly higher than that of the wild type. The variants also differed in their speed of kill. Noninfectious variants SfNIC-C and -D lacked the pif and pif-2 genes. Infectivity was restored to these variants by plasmid rescue with a plasmid comprising both pif and pif-2. Transcription of an SfNIC-G gene was detected by reverse transcription-PCR in insects, but no fatal disease developed. Transcription was not detected in SfNIC-C or -D-inoculated larvae. We conclude that the SfNIC population presents high levels of genetic diversity, localized to a 17-kb region containing pif and pif-2, and that interactions among complete and deleted genotypic variants will likely influence the capacity of this virus to control insect pests.Publication Open Access Sf29 Gene of Spodoptera frugiperda multiple nucleopolyhedrovirus is a viral factor that determines the number of virions in occlusion bodies(American Society for Microbiology, 2008) Simón de Goñi, Oihane; Williams, Trevor; Asensio, Aarón C.; Ros Terés, Sarhay; Gaya Cacho, Andrea; Caballero Murillo, Primitivo; Possee, Robert D.; Nekazaritza Ekoizpena; Producción Agraria; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako InstitutuaThe genome of Spodoptera frugiperda multiple nucleopolyhedrovirus (NPV) was inserted into a bacmid (Sfbac) and used to produce a mutant lacking open reading frame 29 (Sf29null). Sf29null bacmid DNA was able to generate an infection in S. frugiperda. Approximately six times less DNA was present in occlusion bodies (OBs) produced by the Sf29null bacmid in comparison to viruses containing this gene. This reduction in DNA content was consistent with fewer virus particles being packaged within Sf29null bacmid OBs, as determined by fractionation of dissolved polyhedra and comparison of occlusion-derived virus (ODV) infectivity in cell culture. DNA from Sfbac, Sf29null, or Sf29null-repair, in which the gene deletion had been repaired, were equally infectious when used to transfect S. frugiperda. All three viruses produced similar numbers of OBs, although those from Sf29null were 10-fold less infectious than viruses with the gene. Insects infected with Sf29null bacmid died 24 h later than positive controls, consistent with the reduced virus particle content of Sf29null OBs. Transcripts from Sf29 were detected in infected insects 12 h prior to those from the polyhedrin gene. Homologs to Sf29 were present in other group II NPVs, and similar sequences were present in entomopoxviruses. Analysis of the Sf29 predicted protein sequence revealed signal peptide and transmembrane domains, but the presence of 12 potential N-glycosylation sites suggest that it is not an ODV envelope protein. Other motifs, including zinc-binding and threonine-rich regions, suggest degradation and adhesion functions. We conclude that Sf29 is a viral factor that determines the number of ODVs occluded in each OB.Publication Open Access Defective or effective?: mutualistic interactions between virus genotypes(Royal Society, 2003-11-07) López Ferber, Miguel; Simón de Goñi, Oihane; Williams, Trevor; Caballero Murillo, Primitivo; Producción Agraria; Nekazaritza EkoizpenaDefective viruses lack genes essential for survival but they can co-infect with complete virus genotypes and use gene products from the complete genotype for their replication and transmission. As such, they are detrimental to the fitness of complete genotypes. Here, we describe a mutualistic interaction between genotypes of an insect baculovirus (nucleopolyhedrovirus of Spodoptera frugiperda (Lepidoptera)) that increases the pathogenicity of the viral population. Mixtures of a complete genotype able to be transmitted orally and a deletion mutant unable to be transmitted orally resulted in a phenotype of increased pathogenicity. Because the infectiousness of mixed genotype infections was greater than that of single genotype infections, we predict that the transmissibility of mixed genotype occlusion bodies will be greater than that of any of their single genotype components. Such interactions will be subject to frequency-dependent selection and will influence the impact of these viruses on insect population dynamics and their efficacy as biological insecticides.Publication Open Access Mixtures of complete and pif1- and pif2-deficient genotypes are required for increased potency of an insect nucleopolyhedrovirus(American Society for Microbiology, 2009) Clavijo Palacios, Gabriel; Williams, Trevor; Simón de Goñi, Oihane; Muñoz Labiano, Delia; Cerutti, Martine; López Ferber, Miguel; Caballero Murillo, Primitivo; Nekazaritza Ekoizpena; Producción Agraria; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako InstitutuaThe insecticidal potency of a nucleopolyhedrovirus population (SfNIC) that infects Spodoptera frugiperda (Lepidoptera) is greater than the potency of any of the component genotypes alone. Occlusion bodies (OBs) produced in mixed infections comprising the complete genotype and a deletion genotype are as pathogenic as the natural population of genotypes from the field. To test whether this increased potency was due to the deletion or to some other characteristic of the deletion variant genome, we used the SfNIC-B genome to construct a recombinant virus (SfNIC-BΔ16K) with the same 16.4-kb deletion as that observed in SfNIC-C and another recombinant (SfNIC-BΔpifs) with a deletion encompassing two adjacent genes (pif1 and pif2) that are essential for transmission per os. Mixtures comprising SfNIC-B and SfNIC-B 16K in OB ratios that varied between 10:90 and 90:10 were injected into insects, and the progeny OBs were fed to larvae in an insecticidal potency assay. A densitometric analysis of PCR products indicated that SfNIC-B was generally more abundant than expected in mixtures based on the proportions of OBs used to produce the inocula. Mixtures derived from OB ratios of 10, 25, or 50% of SfNIC-BΔ16K and the corresponding SfNIC-B proportions showed a significant increase in potency compared to SfNIC-B alone. The results of potency assays with mixtures comprising various proportions of SfNIC-B plus SfNIC-BΔpifs were almost identical to the results observed with SfNICB 16K, indicating that deletion of the pif gene region was responsible for the increased potency observed in mixtures of SfNIC-B and each deletion recombinant virus. Subsequently, mixtures produced from OB ratios involving 10 or 90% of SfNIC-BΔ16K with the corresponding proportions of SfNIC-B were subjected to four rounds of per os transmission in larvae. The composition of each experimental mixture rapidly converged to a common equilibrium with a genotypic composition of ~85% SfNIC-B plus 15% SfNIC-BΔ16K. Nearly identical results were observed in peroral-passage experiments involving mixtures of SfNIC-B plus SfNICBΔpifs. We conclude that (i) the deletion of the pif1 and pif2 region is necessary and sufficient to explain the increased potency observed in mixtures of complete and deletion genotypes and (ii) viral populations with decreased ratios of pif1- and pif2-deficient genotypes in the virus population increase the potency of genotypic mixtures and are likely to positively influence the transmission of this pathogen.Publication Open Access Virus entry or the primary infection cycle are not the principal determinants of host specificity of Spodoptera spp. nucleopolyhedroviruses(Microbiology Society, 2004-10-01) Simón de Goñi, Oihane; Williams, Trevor; López Ferber, Miguel; Caballero Murillo, Primitivo; Producción Agraria; Nekazaritza EkoizpenaThe multicapsid nucleopolyhedroviruses (NPVs) of Spodoptera exigua (SeMNPV), Spodoptera frugiperda (SfMNPV), and Spodoptera littoralis (SpliNPV) are genetically similar (78% similarity) but differ in their degree of host specificity. Infection by each of the three NPVs in these three Spodoptera host species was determined by oral inoculation of larvae with occlusion bodies (OBs) or intrahaemocoelic injection with occlusion derived virions (ODVs). RT-PCR analysis of total RNA from inoculated insects, targeted at immediate early (ie-0), early (egt, DNA polymerase), late (chitinase) and very late genes (polyhedrin), indicated that each of the NPVs initiated an infection in all three host species tested. SpliMNPV produced a fatal NPV disease in both heterologous hosts, S. frugiperda and S. exigua, by oral inoculation or injection. SfMNPV was lethal to heterologous hosts, S. exigua and S. littoralis, but infected larvae did not melt and disintegrate, and progeny OBs were not observed. SeMNPV was able to replicate in heterologous hosts and all genes required for replication were present in the genome, as the virus primary infection cycle was observed. However, gene expression was significantly lower in heterologous hosts. SeMNPV pathogenesis in S. frugiperda and S. littoralis was blocked at the haemocoel transmission stage and very nearly cleared. SeMNPV mixtures with SpliMNPV or SfMNPV did not extend the host range of SeMNPV; in all cases, only the homologous virus was observed to proliferate. It is concluded that entry and the primary virus infection cycle are not the only, or the major determinants, for SeMNPV infection of heterologous Spodoptera species.Publication Open Access Physical and partial genetic map of Spodoptera frugiperda nucleopolyhedrovirus (SfMNPV) genome(Springer, 2005) Simón de Goñi, Oihane; Chevenet, François; Williams, Trevor; Caballero Murillo, Primitivo; López Ferber, Miguel; Producción Agraria; Nekazaritza EkoizpenaA Nicaraguan isolate of Spodoptera frugiperda multicapsid nucleopolyhedrovirus (SfMNPV) is undergoing field trials for control of this pest in the Americas. This isolate is composed of multiple genotypes, some of which are deletion mutants. Identification of the genetic changes in deleted genotypes cannot be accomplished without the construction of a detailed physical map. In the present study, combinations of restriction endonuclease analysis and Southern blot analysis was performed. This map was refined by sequencing the termini of cloned restriction fragments. The SfMNPV genome was estimated to be 129.3 kb, 8 kb larger than the previously characterized Sf-2 variant from the United States, due to a deletion between 14.8 and 21.0 m.u. in the physical map described in this study. A total of 27.92 kb were sequenced, which represented 21.5% of the whole genome and included 38 ORFs. Comparison with other sequenced baculoviruses revealed that SfMNPV displayed the highest sequence identity (66%) and gene arrangement (78%) with Spodoptera exigua MNPV, sharing 36 putative ORFs. In addition, the genome organization was similar to that of SeMNPV, with minor differences. Phylogenetic analysis confirmed the close relatedness between SeMNPV and SfMNPV, suggesting they evolved from a common ancestor.