Williams, Trevor

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Williams

First Name

Trevor

person.page.departamento

Producción Agraria

person.page.instituteName

ORCID

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 2 of 2
  • PublicationOpen Access
    A qPCR assay for the quantification of selected genotypic variants of spodoptera frugiperda multiple nucleopolyhedrovirus (Baculoviridae)
    (MDPI, 2024-05-20) Molina-Ruiz, Cindy S.; Zamora-Briseño, Jesús Alejandro; Simón de Goñi, Oihane; Lasa, Rodrigo; Williams, Trevor; Institute for Multidisciplinary Research in Applied Biology - IMAB
    Alphabaculoviruses are lethal dsDNA viruses of Lepidoptera that have high genetic diversity and are transmitted in aggregates within proteinaceous occlusion bodies. This mode of transmission has implications for their efficacy as biological insecticides. A Nicaraguan isolate of Spodoptera frugiperda multiple nucleopolyhedrovirus (SfMNPV-NIC) comprising nine genotypic variants has been the subject of considerable study due to the influence of variant interactions on the insecticidal properties of mixed-variant occlusion bodies. As part of a systematic study on the replication and transmission of variant mixtures, a tool for the accurate quantification of a selection of genotypic variants was developed based on the quantitative PCR technique (qPCR). First, primer pairs were designed around a region of high variability in four variants named SfNic-A, SfNic-B, SfNic-C and SfNic-E to produce amplicons of 103–150 bp. Then, using cloned purified amplicons as standards, amplification was demonstrated over a dynamic range of 108–101 copies of each target. The assay was efficient (mean ± SD: 98.5 ± 0.8%), reproducible, as shown by low inter- and intra-assay coefficients of variation (<5%), and specific to the target variants (99.7–100% specificity across variants). The quantification method was validated on mixtures of genotype-specific amplicons and demonstrated accurate quantification. Finally, mixtures of the four variants were quantified based on mixtures of budded virions and mixtures of DNA extracted from occlusion-derived virions. In both cases, mixed-variant preparations compared favorably to total viral genome numbers by quantification of the polyhedrin (polh) gene that is present in all variants. This technique should prove invaluable in elucidating the influence of variant diversity on the transmission and insecticidal characteristics of this pathogen.
  • PublicationOpen Access
    Effect of optical brighteners on the insecticidal activity of a nucleopolyhedrovirus in three instars of Spodoptera frugiperda
    (Blackwell Science, 2003-10-17) Martínez Castillo, Ana Mabel; Simón de Goñi, Oihane; Williams, Trevor; Caballero Murillo, Primitivo; Producción Agraria; Nekazaritza Ekoizpena
    Certain optical brighteners are effective UV protectants, and can improve the insecticidal activity of baculoviruses. We evaluated the effect of 10 optical brighteners, from four chemically different groups, on the insecticidal activity of a nucleopolyhedrovirus (SfMNPV) in third instar Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae). The most effective optical brighteners were Blankophor BBH and Calcofluor M2R, both of which are stilbenes. The distyryl-biphenyl derivative, Tinopal CBS, had no effect, whereas the stilbenes, Blankophor CLE and Leucophor SAC and the styryl-benzenic derivative, Blankophor ER, resulted in a decrease in virus induced mortality compared to larvae infected with SfMNPV alone. Mixtures of SfMNPV + 0.1% Calcofluor M2R had relative potencies of 2.7, 6.5, and 61.6 in the second, third, and fourth instars, respectively. The mean time to death differed with instar, but was not affected by the addition of 0.1% Calcofluor M2R. Analysis of published studies indicated that the concentration of Calcofluor M2R-related stilbenes was positively correlated with the relative potency observed in mixtures with homologous NPVs. The average magnitude of optical brightener activity did not differ significantly between early instars of 10 species of Lepidoptera. We conclude that virus formulations containing optical brighteners may be valuable for control of late instar lepidopteran pests.