Orozco Acosta, Erick
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Orozco Acosta
First Name
Erick
person.page.departamento
Estadística, Informática y Matemáticas
person.page.instituteName
InaMat2. Instituto de Investigación en Materiales Avanzados y Matemáticas
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
2 results
Search Results
Now showing 1 - 2 of 2
Publication Open Access Exploring disease mapping models in big data contexts: some new proposals(2023) Orozco Acosta, Erick; Adin Urtasun, Aritz; Ugarte Martínez, María Dolores; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa, PJUPNA2001La representación cartográfica de enfermedades es un área de investigación muy relevante y significativa dentro del campo de la estadística espacial (datos de área), ya que ofrece un apoyo muy importante para la toma de decisiones en materia de salud pública. Debido a la gran variabilidad de los estimadores de riesgo clásicos, como la razón de mortalidad estandarizada (RME), el uso de modelos estadísticos complejos resulta esencial para obtener una representación más coherente del riesgo de enfermedad subyacente. Durante las últimas décadas se han propuesto en la literatura varios modelos estadísticos para suavizar riesgos espacio-temporales, la mayoría de ellos considerando modelos que incorporan efectos aleatorios con distribuciones a priori condicionales autorregresivas (CAR), basándose en el trabajo seminal de Besag et al. (1991). Sin embargo, la escalabilidad de estos modelos, concretamente su viabilidad en escenarios en los que el número de áreas pequeñas aumenta significativamente, no ha sido estudiada suficientemente. Por lo tanto, el principal objetivo de esta tesis es proponer nuevos métodos de modelización bayesiana escalables para suavizar riesgos (o tasas) de incidencia/mortalidad en datos de área espaciales y espacio-temporales de alta dimensión. La metodología está basada en el principio de “divide y vencerás”. La presente tesis aborda en concreto los objetivos descritos a continuación. El primer objetivo es revisar la bibliografía más reciente acerca de las principales aportaciones en el ámbito espacial y espacio-temporal que son relevantes para los objetivos de esta investigación. El capítulo 1 ofrece una visión general del ajuste y la inferencia de modelos, centrándose en la técnica INLA, basada en aproximaciones de Laplace anidadas e integración numérica, ampliamente utilizada para modelos Gaussianos latentes dentro del paradigma Bayesiano (Rue et al., 2009). En este capítulo también se proporcionan aproximaciones de criterios de selección de modelos basados en la desviación Bayesiana (denominada deviance en inglés) y la distribución predictiva bajo las nuevas propuestas de modelos escalables. También se incluye una breve descripción del paquete bigDM de R, que implementa todos los algoritmos y modelos propuestos en esta disertación. El segundo objetivo de esta tesis es proponer un método de modelización Bayesiana escalable para el tratamiento de datos de área espaciales de alta dimensión. En el Capítulo 2, se facilita una descripción exhaustiva de una nueva metodología de suavización de riesgos. También se lleva a cabo un estudio de simulación multiescenario que incluye casi 8 000 municipios españoles para comparar el método propuesto con un modelo global tipo CAR en términos de bondad de ajuste y precisión en la estimación de la superficie de riesgos. Además, se ilustra el comportamiento de los modelos escalables analizando datos de mortalidad por cáncer de colon y recto en hombres para municipios españoles utilizando dos estrategias diferentes de partición del dominio espacial. El tercer objetivo es ampliar el enfoque de modelización Bayesiana escalable para suavizar riesgos de mortalidad o incidencia espacio-temporales de alta dimensión. En el capítulo 3, se presenta una descripción exhaustiva de los modelos CAR espaciotemporales propuestos originalmente por Knorr-Held (2000), que son la base de la nueva propuesta de modelización para analizar datos de área espacio-temporales. El capítulo también explica las estrategias de paralelización y computación distribuida implementadas en el paquete bigDM para acelerar los cálculos mediante el uso del paquete future (Bengtsson, 2021) de R. Se realiza un estudio de simulación para comparar la nueva propuesta escalable con dos estrategias de fusión diferentes frente a los modelos CAR espacio-temporales tradicionales utilizando el mapa de los municipios españoles como plantilla. Además, se evalúa la nueva propuesta en términos de tiempo computacional. Finalmente, se ilustran y comparan todos los enfoques descritos en este capítulo analizando la evolución espacio-temporal de la mortalidad por cáncer de pulmón en hombres en los municipios españoles durante el periodo 1991-2015. El cuarto objetivo es evaluar la idoneidad del método desarrollado en el Capítulo 3 para la previsión a corto plazo de datos de alta resolución espacial. En el Capítulo 4, se presenta el modelo CAR espacio-temporal que incorpora observaciones faltantes en la variable respuesta para los periodos de tiempo que se van a pronosticar. Adicionalmente, se realiza un estudio de validación para evaluar la capacidad predictiva de los modelos para predicciones a uno, dos y tres periodos utilizando datos reales de mortalidad por cáncer de pulmón en municipios españoles. En este capítulo, también se compara la capacidad predictiva de los modelos utilizando medidas de validación cruzada (denominadas en inglés leave-one-out y leave-group-out) (Liu and Rue, 2022). El quinto objetivo es transversal a todos los capítulos. El objetivo es desarrollar un paquete en lenguaje R de código abierto llamado bigDM (Adin et al., 2023b) que consolida todos los métodos propuestos en esta disertación haciéndolos fácilmente disponibles para su uso por la comunidad científica. La tesis finaliza con las principales conclusiones de este trabajo y detalla futuras líneas de investigación.Publication Open Access Bayesian modeling approach in Big Data contexts: an application in spatial epidemiology(IEEE, 2020) Orozco Acosta, Erick; Adin Urtasun, Aritz; Ugarte Martínez, María Dolores; Estatistika, Informatika eta Matematika; Institute for Advanced Materials and Mathematics - INAMAT2; Estadística, Informática y MatemáticasIn this work we propose a novel scalable Bayesian modeling approach to smooth mortality risks borrowing information from neighbouring regions in high-dimensional spatial disease mapping contexts. The method is based on the well-known divide and conquer approach, so that the spatial domain is divided into D subregions where local spatial models can be fitted simultaneously. Model fitting and inference has been carried out using the integrated nested Laplace approximation (INLA) technique. Male colorectal cancer mortality data in the municipalities of continental Spain have been analyzed using the new model proposals. Results show that the new modeling approach is very competitive in terms of model fitting criteria when compared with a global spatial model, and it is computationally much more efficient.