Person: Martín Iglesias, Petronilo
Loading...
Email Address
person.page.identifierURI
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Martín Iglesias
First Name
Petronilo
person.page.departamento
Ingeniería Eléctrica, Electrónica y de Comunicación
person.page.instituteName
ORCID
0000-0001-5941-2761
person.page.upna
TA123916
Name
2 results
Search Results
Now showing 1 - 2 of 2
Publication Open Access Integrating multiple stubs in stepped-impedance filter aiming for high selectivity(IET, 2022) Sami, Abdul; Gómez Laso, Miguel Ángel; Lopetegui Beregaña, José María; Arnedo Gil, Israel; Calero Fernández, Ibai; Teberio Berdún, Fernando; Martín Iglesias, Petronilo; Benito Pertusa, David; Arregui Padilla, Iván; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de ComunicaciónA design technique to include multiple and fully-controlled transmission zeros (TZs) in the frequency response of rectangular waveguide commensurate-line stepped-impedance filters is presented in this letter. These bandpass filters (BPFs) are known for having reduced sensitivities against manufacturing inaccuracies and are composed of multiple waveguide sections. In order to improve their selectivity, 3λg/4 and λg/4-stubs are included to create multiple TZs around the passband. The proposed technique allows us to add multiple stubs in a single section and, therefore, only minor adjustments in the affected part of the filter are required, which simplifies the overall design process. The technique has been verified with a design example with four TZs (two on each side) near the passband.Publication Open Access Design of an additively-manufactured self-supported all-metal coaxial-line X-band bandpass filter(IEEE, 2024) Pons Abenza, Alejandro; Arregui Padilla, Iván; Gómez Laso, Miguel Ángel; Lopetegui Beregaña, José María; Martín Iglesias, Petronilo; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Institute of Smart Cities - ISCIn this contribution, the design and manufacturing of an all-metal coaxial-line X-band bandpass filter is discussed. The device is 3D-printed as a self-supported structure without any dielectric inside the coaxial. The mechanical support between the inner and outer coaxial-line conductors is provided by means of λ/4 short-circuited stubs, which are also used in the bandpass filter design. The real transmission zeros (TZs) produced by the short-circuited stubs are responsible for a high filter selectivity. In order to enhance the filter performance, a second stage consisting in a coaxial-line stepped-impedance low-pass filter is integrated in the design to provide the rejection level required for the out-of-band behaviour. Following our design method, the bandpass and low-pass filters are designed separately, and a final matching step is performed to connect both and to achieve the aimed frequency specifications. In this way, a monoblock coaxial filter with very good in-band and out-of-band performance can by obtained by using an additive manufacturing (AM) procedure. Only the input/output (I/O) coaxial connectors will need to be assembled to the filter to perform the frequency measurements. The filters in this work can be seen as a first proposal towards more complex multi-functional monoblock structures using additively-manufactured coaxial technology, for highly-integrated RF chains. Other expected benefits beyond the compactness or lightweight are an increased RF shielding, electrostatic discharge risk reduction, and Passive Intermodulation (PIM) protection. In the paper, a prototype with a passband between 8 and 12 GHz is designed and manufactured, using a bandpass filter with three stubs and an integrated 15th-order low-pass filter, providing rejection for spurious frequencies up to 30 GHz. The filter is manufactured using Selective Laser Melting (SLM) and measurements show an excellent agreement with the simulations.