Person: Malanda Trigueros, Armando
Loading...
Email Address
person.page.identifierURI
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Malanda Trigueros
First Name
Armando
person.page.departamento
Ingeniería Eléctrica, Electrónica y de Comunicación
person.page.instituteName
ISC. Institute of Smart Cities
ORCID
0000-0002-3122-9049
person.page.upna
379
Name
3 results
Search Results
Now showing 1 - 3 of 3
Publication Open Access Understanding EMG PDF changes with motor unit potential amplitudes, firing rates, and noise level through EMG filling curve analysis(IEEE, 2024-08-30) Navallas Irujo, Javier; Mariscal Aguilar, Cristina; Malanda Trigueros, Armando; Rodríguez Falces, Javier; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio IngeniaritzaEMG filling curve characterizes the EMG filling process and EMG probability density function (PDF) shape change for the entire force range of a muscle.We aim to understand the relation between the physiological and recording variables, and the resulting EMG filling curves. We thereby present an analytical and simulation study to explain how the filling curve patterns relate to specific changes in the motor unit potential (MUP) waveforms and motor unit (MU) firing rates, the two main factors affecting the EMG PDF, but also to recording conditions in terms of noise level. We compare the analytical results with simulated cases verifying a perfect agreement with the analytical model. Finally, we present a set of real EMG filling curves with distinct patterns to explain the information about MUP amplitudes, MU firing rates, and noise level that these patterns provide in the light of the analytical study. Our findings reflect that the filling factor increases when firing rate increases or when newly recruited motor unit have potentials of smaller or equal amplitude than the former ones. On the other hand, the filling factor decreases when newly recruited potentials are larger in amplitude than the previous potentials. Filling curves are shown to be consistent under changes of the MUP waveform, and stretched under MUP amplitude scaling. Our findings also show how additive noise affects the filling curve and can even impede to obtain reliable information from the EMG PDF statistics.Publication Open Access Validation of the filling factor index to study the filling process of the sEMG signal in the quadriceps(Elsevier, 2023) Rodríguez Falces, Javier; Malanda Trigueros, Armando; Mariscal Aguilar, Cristina; Niazi, Imran Khan; Navallas Irujo, Javier; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio IngeniaritzarenIntroduction: The EMG filling factor is an index to quantify the degree to which an EMG signal has been filled. Here, we tested the validity of such index to analyse the EMG filling process as contraction force was slowly increased. Methods: Surface EMG signals were recorded from the quadriceps muscles of healthy subjects as force was gradually increased from 0 to 40% MVC. The sEMG filling process was analyzed by measuring the EMG filling factor (calculated from the non-central moments of the rectified sEMG). Results: (1) As force was gradually increased, one or two prominent abrupt jumps in sEMG amplitude appeared between 0 and 10% of MVC force in all the vastus lateralis and medialis. (2) The jumps in amplitude were originated when a few large-amplitude MUPs, clearly standing out from previous activity, appeared in the sEMG signal. (3) Every time an abrupt jump in sEMG amplitude occurred, a new stage of sEMG filling was initiated. (4) The sEMG was almost completely filled at 2–12% MVC. (5) The filling factor decreased significantly upon the occurrence of an sEMG amplitude jump, and increased as additional MUPs were added to the sEMG signal. (6) The filling factor curve was highly repeatable across repetitions. Conclusions: It has been validated that the filling factor is a useful, reliable tool to analyse the sEMG filling process. As force was gradually increased in the vastus muscles, the sEMG filling process occurred in one or two stages due to the presence of abrupt jumps in sEMG amplitude.Publication Open Access EMG probability density function: a new way to look at EMG signal filling from single motor unit potential to full interference pattern(IEEE, 2023) Navallas Irujo, Javier; Eciolaza Ferrando, Adrián; Mariscal Aguilar, Cristina; Malanda Trigueros, Armando; Rodríguez Falces, Javier; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio IngeniaritzarenAn analytical derivation of the EMG signal's amplitude probability density function (EMG PDF) is presented and used to study how an EMG signal builds-up, or fills, as the degree of muscle contraction increases. The EMG PDF is found to change from a semi-degenerate distribution to a Laplacian-like distribution and finally to a Gaussian-like distribution. We present a measure, the EMG filling factor, to quantify the degree to which an EMG signal has been built-up. This factor is calculated from the ratio of two non-central moments of the rectified EMG signal. The curve of the EMG filling factor as a function of the mean rectified amplitude shows a progressive and mostly linear increase during early recruitment, and saturation is observed when the EMG signal distribution becomes approximately Gaussian. Having presented the analytical tools used to derive the EMG PDF, we demonstrate the usefulness of the EMG filling factor and curve in studies with both simulated signals and real signals obtained from the tibialis anterior muscle of 10 subjects. Both simulated and real EMG filling curves start within the 0.2 to 0.35 range and rapidly rise towards 0.5 (Laplacian) before stabilizing at around 0.637 (Gaussian). Filling curves for the real signals consistently followed this pattern (100% repeatability within trials in 100% of the subjects). The theory of EMG signal filling derived in this work provides (a) an analytically consistent derivation of the EMG PDF as a function of motor unit potentials and motor unit firing patterns; (b) an explanation of the change in the EMG PDF according to degree of muscle contraction; and (c) a way (the EMG filling factor) to quantify the degree to which an EMG signal has been built-up.