Person: Malanda Trigueros, Armando
Loading...
Email Address
person.page.identifierURI
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Malanda Trigueros
First Name
Armando
person.page.departamento
Ingeniería Eléctrica, Electrónica y de Comunicación
person.page.instituteName
ISC. Institute of Smart Cities
ORCID
0000-0002-3122-9049
person.page.upna
379
Name
2 results
Search Results
Now showing 1 - 2 of 2
Publication Open Access Sliding window averaging in normal and pathological motor unit action potential trains(Elsevier, 2018) Malanda Trigueros, Armando; Navallas Irujo, Javier; Rodríguez Falces, Javier; Porta Cuéllar, Sonia; Fernández Martínez, Miguel; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio IngeniaritzarenObjective: To evaluate the performance of a recently proposed motor unit action potential (MUAP) averaging method based on a sliding window, and compare it with relevant published methods in normal and pathological muscles. Methods: Three versions of the method (with different window lengths) were compared to three relevant published methods in terms of signal analysis-based merit figures and MUAP waveform parameters used in the clinical practice. 218 MUAP trains recorded from normal, myopathic, subacute neurogenic and chronic neurogenic muscles were analysed. Percentage scores of the cases in which the methods obtained the best performance or a performance not significantly worse than the best were computed. Results: For signal processing figures of merit, the three versions of the new method performed better (with scores of 100, 86.6 and 66.7%) than the other three methods (66.7, 25 and 0%, respectively). In terms of MUAP waveform parameters, the new method also performed better (100, 95.8 and 91.7%) than the other methods (83.3, 37.5 and 25%). Conclusions: For the types of normal and pathological muscle studied, the sliding window approach extracted more accurate and reliable MUAP curves than other existing methods. Significance: The new method can be of service in quantitative EMG.Publication Open Access Métodos de procesamiento y análisis de señales electromiográficas(Gobierno de Navarra, 2009) Gila Useros, Luis; Malanda Trigueros, Armando; Rodríguez Carreño, Ignacio; Rodríguez Falces, Javier; Navallas Irujo, Javier; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta ElektronikoaLa electromiografía clínica es una metodología de registro y análisis de la actividad bioeléctrica del músculo esquelético orientada al diagnóstico de las enfermedades neuromusculares. Las posibilidades de aplicación y el rendimiento diagnóstico de la electromiografía han evolucionado paralelamente al conocimiento de las propiedades de la energía eléctrica y al desarrollo de la tecnología eléctrica y electrónica. A mediados del siglo XX se introdujo el primer equipo comercial de electromiografía para uso médico basado en circuitos electrónicos analógicos. El desarrollo posterior de la tecnología digital ha permitido disponer de sistemas controlados por microprocesadores cada vez más fiables y potentes para captar, representar, almacenar, analizar y clasificar las señales mioeléctricas. Es esperable que el avance de las nuevas tecnologías de la información y la comunicación pueda conducir en un futuro próximo a la aplicación de desarrollos de inteligencia artificial que faciliten la clasificación automática de señales así como sistemas expertos de apoyo al diagnóstico electromiográfico.