Person: Malanda Trigueros, Armando
Loading...
Email Address
person.page.identifierURI
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Malanda Trigueros
First Name
Armando
person.page.departamento
Ingeniería Eléctrica, Electrónica y de Comunicación
person.page.instituteName
ISC. Institute of Smart Cities
ORCID
0000-0002-3122-9049
person.page.upna
379
Name
5 results
Search Results
Now showing 1 - 5 of 5
Publication Open Access A masked least-squares smoothing procedure for artifact reduction in scanning-EMG recordings(Springer, 2018) Corera Orzanco, Íñigo; Eciolaza Ferrando, Adrián; Rubio Zamora, Oliver; Malanda Trigueros, Armando; Rodríguez Falces, Javier; Navallas Irujo, Javier; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio IngeniaritzarenScanning-EMG is an electrophysiological technique in which the electrical activity of the motor unit is recorded at multiple points along a corridor crossing the motor unit territory. Correct analysis of the scanning-EMG signal requires prior elimination of interference from nearby motor units. Although the traditional processing based on the median filtering is effective in removing such interference, it distorts the physiological waveform of the scanning-EMG signal. In this study, we describe a new scanning-EMG signal processing algorithm that preserves the physiological signal waveform while effectively removing interference from other motor units. To obtain a cleaned-up version of the scanning signal, the masked least-squares smoothing (MLSS) algorithm recalculates and replaces each sample value of the signal using a least-squares smoothing in the spatial dimension, taking into account the information of only those samples that are not contaminated with activity of other motor units. The performance of the new algorithm with simulated scanning-EMG signals is studied and compared with the performance of the median algorithm and tested with real scanning signals. Results show that the MLSS algorithm distorts the waveform of the scanning-EMG signal much less than the median algorithm (approximately 3.5 dB gain), being at the same time very effective at removing interference components.Publication Open Access EMG probability density function: a new way to look at EMG signal filling from single motor unit potential to full interference pattern(IEEE, 2023) Navallas Irujo, Javier; Eciolaza Ferrando, Adrián; Mariscal Aguilar, Cristina; Malanda Trigueros, Armando; Rodríguez Falces, Javier; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio IngeniaritzarenAn analytical derivation of the EMG signal's amplitude probability density function (EMG PDF) is presented and used to study how an EMG signal builds-up, or fills, as the degree of muscle contraction increases. The EMG PDF is found to change from a semi-degenerate distribution to a Laplacian-like distribution and finally to a Gaussian-like distribution. We present a measure, the EMG filling factor, to quantify the degree to which an EMG signal has been built-up. This factor is calculated from the ratio of two non-central moments of the rectified EMG signal. The curve of the EMG filling factor as a function of the mean rectified amplitude shows a progressive and mostly linear increase during early recruitment, and saturation is observed when the EMG signal distribution becomes approximately Gaussian. Having presented the analytical tools used to derive the EMG PDF, we demonstrate the usefulness of the EMG filling factor and curve in studies with both simulated signals and real signals obtained from the tibialis anterior muscle of 10 subjects. Both simulated and real EMG filling curves start within the 0.2 to 0.35 range and rapidly rise towards 0.5 (Laplacian) before stabilizing at around 0.637 (Gaussian). Filling curves for the real signals consistently followed this pattern (100% repeatability within trials in 100% of the subjects). The theory of EMG signal filling derived in this work provides (a) an analytically consistent derivation of the EMG PDF as a function of motor unit potentials and motor unit firing patterns; (b) an explanation of the change in the EMG PDF according to degree of muscle contraction; and (c) a way (the EMG filling factor) to quantify the degree to which an EMG signal has been built-up.Publication Open Access Masked least-squares averaging in processing of scanning-EMG recordings with multiple-discharges(Springer, 2020) Corera Orzanco, Íñigo; Malanda Trigueros, Armando; Rodríguez Falces, Javier; Navallas Irujo, Javier; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta ElektronikoaRemoving artifacts from nearby motor units is one of the main objectives when processing scanning-EMG recordings. Methods such as median filtering or masked least-squares smoothing (MLSS) can be used to eliminate artifacts in recordings with just one discharge of the motor unit potential (MUP) at each location. However, more effective artifact removal can be achieved if several discharges per position are recorded. In this case, processing usually involves averaging the discharges available at each position and then applying a median filter in the spatial dimension. The main drawback of this approach is that the median filter tends to distort the signal waveform. In this paper, we present a new algorithm that operates on multiple discharges simultaneously and in the spatial dimension. We refer to this algorithm as the multi masked least-squares smoothing (MMLSS) algorithm: an extension of the MLSS algorithm for the case of multiple discharges. The algorithm is tested using simulated scanning-EMG signals in different recording conditions, i.e., at different levels of muscle contraction and for different numbers of discharges per position. Results demonstrate that the algorithm eliminates artifacts more effectively than any previously available method and does so without distorting the waveform of the signal.Publication Open Access A new muscle architecture model with non-uniform distribution of muscle fiber types(World Academy of Science, Engineering and Technology, 2007) Navallas Irujo, Javier; Malanda Trigueros, Armando; Gila Useros, Luis; Rodríguez Falces, Javier; Rodríguez Carreño, Ignacio; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta ElektronikoaAccording to previous studies, some muscles present a non-homogeneous spatial distribution of its muscle fiber types and motor unit types. However, available muscle models only deal with muscles with homogeneous distributions. In this paper, a new architecture muscle model is proposed to permit the construction of non-uniform distributions of muscle fibers within the muscle cross section. The idea behind is the use of a motor unit placement algorithm that controls the spatial overlapping of the motor unit territories of each motor unit type. Results show the capabilities of the new algorithm to reproduce arbitrary muscle fiber type distributions.Publication Open Access EMG modeling(InTechOpen, 2012) Rodríguez Falces, Javier; Navallas Irujo, Javier; Malanda Trigueros, Armando; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta ElektronikoaThe aim of this chapter is to describe the approaches used for modelling electromyographic (EMG) signals as well as the principles of electrical conduction within the muscle. Sections are organized into a progressive, step-by-step EMG modeling of structures of increasing complexity. First, the basis of the electrical conduction that allows for the propagation of the EMG signals within the muscle is presented. Second, the models used for describing the electrical activity generated by a single fibre described. The third section is devoted to modeling the organization of the motor unit and the generation of motor unit potentials. Based on models of the architectural organization of motor units and their activation and firing mechanisms, the last section focuses on modeling the electrical activity of a complete muscle as recorded at the surface.