Malanda Trigueros, Armando

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Malanda Trigueros

First Name

Armando

person.page.departamento

Ingeniería Eléctrica, Electrónica y de Comunicación

person.page.instituteName

ISC. Institute of Smart Cities

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 10 of 37
  • PublicationOpen Access
    A mathematical analysis of SFAP convolutional models
    (IEEE, 2005-05-31) Rodríguez Falces, Javier; Malanda Trigueros, Armando; Gila Useros, Luis; Rodríguez Carreño, Ignacio; Navallas Irujo, Javier; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektriko eta Elektronikoa Saila
    In this work we compare, from a mathematical point of view, two well-recognised single fibre action potential (SFAP) convolutional models: the Nandedkar-Stalberg (N-S) model and the Dimitrov-Dimitrova (D-D) model. Junction waves appear in N-S SFAPs due to the onset and extinction of the monopoles whereas in D-D SFAPs these waves appear only when the dipoles reach the fibre/tendon junctions. D-D junction waves model more accurately the out-of-the-main-spike waveforms that appear in experimental SFAPs. The origin of junction waves lies in the discontinuities of the impulse responses There are two kinds of these waves caused by the two types of existing discontinuities (in the impulse response function and in its derivative). We model each kind of discontinuity with a different mathematical function. Using these functions, the N-S and D-D impulse responses can be split and therefore the junction waves can be separated from the spike component of the SFAP. The expansion of the impulse response helps us to understand the differences between the N-S and D-D junction waves.
  • PublicationOpen Access
    The probability density function of the surface electromyogram and its dependence on contraction force in the vastus lateralis
    (BMC, 2024-10-26) Rodríguez Falces, Javier; Malanda Trigueros, Armando; Mariscal Aguilar, Cristina; Recalde Villamayor, Silvia; Navallas Irujo, Javier; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Introduction: the probability density function (PDF) of the surface electromyogram (sEMG) depends on contraction force. This dependence, however, has so far been investigated by having the subject generate force at a few fixed percentages of MVC. Here, we examined how the shape of the sEMG PDF changes with contraction force when this force was gradually increased from zero. Methods: voluntary surface EMG signals were recorded from the vastus lateralis of healthy subjects as force was increased in a continuous manner vs. in a step-wise fashion. The sEMG filling process was examined by measuring the EMG filling factor, computed from the non-central moments of the rectified sEMG signal. Results: in 84% of the subjects, as contraction force increased from 0 to 10% MVC, the sEMG PDF shape oscillated back and forth between the semi-degenerate and the Gaussian distribution; the PDF–force relation varied greatly among subjects for forces between 0 and ~ 10% MVC, but this variability was largely reduced for forces above 10% MVC; the pooled analysis showed that, as contraction force gradually increased, the sEMG PDF evolved rapidly from the semi-degenerate towards the Laplacian distribution from 0 to 5% MVC, and then more slowly from the Laplacian towards the Gaussian distribution for higher forces. Conclusions: the study demonstrated that the dependence of the sEMG PDF shape on contraction force can only be reliably assessed by gradually increasing force from zero, and not by performing a few constant-force contractions. The study also showed that the PDF–force relation differed greatly among individuals for contraction forces below 10% MVC, but this variability was largely reduced when force increased above 10% MVC.
  • PublicationOpen Access
    Algorithm for jitter measurement in neuromuscular junction disease
    (Elsevier, 2025-10-01) Malanda Trigueros, Armando; Stashuk, Daniel W.; Valle, César; Rodríguez Falces, Javier; Navallas Irujo, Javier; De Carvalho, Mamede Alves; Castro, José; Garnés Camarena, Óscar; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Institute of Smart Cities - ISC; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa; Gobierno de Navarra / Nafarroako Gobernua
    The objective of this work was to extend the evaluation of a recently proposed method for estimating neuromuscular jitter within motor unit potential (MUP) trains extracted from muscles suffering neuromuscular junction disease. The method detects, within the MUP duration, “single-fiber” intervals that have likely been produced by single muscle fibers. Jitter is then estimated between pairs of these “single-fiber” intervals using an algorithm which incorporates the traditional mean consecutive difference (MCD) parameter. Electromyographic (EMG) recordings from facial muscles of 15 patients with symptoms related to myasthenia gravis were obtained. MUP trains were extracted using DQEMG software and manual jitter measures were obtained using an ad-hoc graphical interface, which emulates single fiber EMG protocols. Automatic measures for two different values of an internal threshold parameter were obtained and compared to manual measures. 5 %, 25 %, 75 % and 95 % percentiles for the differences between the automatic and manual jitter measurements were [− 3.74, − 1.47, 1.24, 3.47 μs] and [− 6.45, − 2.07, 1.65, 7.16 μs], for the two threshold values, respectively. Therefore, very small statistical and clinical differences were found between the automatic and manual jitter measures, supporting the method as an accurate tool for jitter assessment or as a guiding aid for manual procedures.
  • PublicationOpen Access
    Validation of the filling factor index to study the filling process of the sEMG signal in the quadriceps
    (Elsevier, 2023) Rodríguez Falces, Javier; Malanda Trigueros, Armando; Mariscal Aguilar, Cristina; Niazi, Imran Khan; Navallas Irujo, Javier; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    Introduction: The EMG filling factor is an index to quantify the degree to which an EMG signal has been filled. Here, we tested the validity of such index to analyse the EMG filling process as contraction force was slowly increased. Methods: Surface EMG signals were recorded from the quadriceps muscles of healthy subjects as force was gradually increased from 0 to 40% MVC. The sEMG filling process was analyzed by measuring the EMG filling factor (calculated from the non-central moments of the rectified sEMG). Results: (1) As force was gradually increased, one or two prominent abrupt jumps in sEMG amplitude appeared between 0 and 10% of MVC force in all the vastus lateralis and medialis. (2) The jumps in amplitude were originated when a few large-amplitude MUPs, clearly standing out from previous activity, appeared in the sEMG signal. (3) Every time an abrupt jump in sEMG amplitude occurred, a new stage of sEMG filling was initiated. (4) The sEMG was almost completely filled at 2–12% MVC. (5) The filling factor decreased significantly upon the occurrence of an sEMG amplitude jump, and increased as additional MUPs were added to the sEMG signal. (6) The filling factor curve was highly repeatable across repetitions. Conclusions: It has been validated that the filling factor is a useful, reliable tool to analyse the sEMG filling process. As force was gradually increased in the vastus muscles, the sEMG filling process occurred in one or two stages due to the presence of abrupt jumps in sEMG amplitude.
  • PublicationOpen Access
    Analysis of the relationship between the rise-time and the amplitude of single-fibre potentials in human muscles
    (Elsevier, 2010-08-09) Rodríguez Falces, Javier; Navallas Irujo, Javier; Gila Useros, Luis; Rodríguez Carreño, Ignacio; Malanda Trigueros, Armando; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektriko eta Elektronikoa Saila
    Using the core-conductor theory, a single fibre action potential (SFAP) can be expressed as the convolution of a biolectrical source and a weight function. In the Dimitrov¿Dimitrova (D¿D) SFAP convolutional model, the first temporal derivative of the intracellular action potential (IAP) is used as the source. The present work evaluates the relationship between the SFAP peak-to-peak amplitude (Vpp) and peak-topeak interval (rise-time, RT) at different fibre-to-electrode distances using simulated signals obtained by the D¿D model as well as real recordings. With a single fibre electrode, we recorded 63 sets of consecutive SFAPs from the m. tibialis anterior of four normal subjects. The needle was intentionally moved whilst recording each SFAP set. We used the observed changes in RT and Vpp within each SFAP set as a point of reference with which to evaluate how closely the relationship between RT and Vpp provided by the D¿D model reflects real data. We found that half of the recorded SFAP sets had rise-times higher than those generated by the D¿D model. We also showed the influence of the IAP spatial length on the sensitivity of RT and Vpp with radial distance. The study reveals some inaccuracies in simulated SFAPs whose origin might be related to the assumptions made in the core-conductor theory.
  • PublicationOpen Access
    Comparison of the duration and power spectral changes of monopolar and bipolar M waves caused by alterations in muscle fibre conduction velocity
    (Elsevier, 2014-04-13) Rodríguez Falces, Javier; Navallas Irujo, Javier; Malanda Trigueros, Armando; Rodríguez Martín, Olivia; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa
    The muscle compound action potential (M wave) recorded under monopolar configuration reflects both the propagation of the action potentials along the muscle fibres and their extinction at the tendon. M waves recorded under a bipolar configuration contain less cross talk and noise than monopolar M waves, but they do not contain the entire informative content of the propagating potential. The objective of this study was to compare the effect of changes in muscle fibre conduction velocity (MFCV) on monopolar and bipolar M waves and how this effect depends on the distance between the recording electrodes and tendon. The study was based on a simulation approach and on an experimental investigation of the characteristics of surface M waves evoked in the vastus lateralis during 4-s step-wise isometric contractions in knee extension at 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, and 90% MVC. The peak-to-peak duration (Durpp) and median frequency (Fmedian) of the M waves were calculated. For monopolar M waves, changes in Durpp and Fmedian produced by MFCV depended on the distance from the electrode to the tendon, whereas, for bipolar M waves, changes in Durpp and Fmedian were largely independent of the electrode-to-tendon distance. When the distance between the detection point and tendon lay between approximately 15 and 40 mm, changes in Durpp of bipolar M waves were more pronounced than those of distal monopolar M waves but less marked than those of proximal monopolar M waves, and the opposite occurred for Fmedian. Since, for bipolar M waves, changes in duration and power spectral features produced by alterations in MFCV are not influenced by the electrode-to-tendon distance, the bipolar electrode configuration is a preferable choice over monopolar arrangements to estimate changes in conduction velocity.
  • PublicationUnknown
    Motor unit action potential duration, II: a new automatic measurement method based on the wavelet transform
    (Lippincott, Williams & Wilkins, 2007) Rodríguez Carreño, Ignacio; Gila Useros, Luis; Malanda Trigueros, Armando; García Gurtubay, Ignacio; Mallor Giménez, Fermín; Gómez Elvira, Sagrario; Rodríguez Falces, Javier; Navallas Irujo, Javier; Ingeniería Eléctrica y Electrónica; Estadística e Investigación Operativa; Ingeniaritza Elektrikoa eta Elektronikoa; Estatistika eta Ikerketa Operatiboa
    To present and evaluate a new algorithm, based on the wavelet transform, for the automatic measurement of motor unit action potential (MUAP) duration. A total of 240 MUAPs were studied. The waveform of each MUAP was wavelet-transformed, and the start and end points were estimated by regarding the maxima and minima points in a particular scale of the wavelet transform. The results of the new method were compared with the gold standard of duration marker positions obtained by manual measurement. The new method was also compared with a conventional algorithm, which we had found to be best in a previous comparative study. To evaluate the new method against manual measurements, the dispersion of automatic and manual duration markers were analyzed in a set of 19 repeatedly recorded MUAPs. The differences between the new algorithm’s marker positions and the gold standard of duration marker positions were smaller than those observed with the conventional method. The dispersion of the new algorithm’s marker positions was slightly less than that of the manual one. Our new method for automatic measurement of MUAP duration is more accurate than other available algorithms and more consistent than manual measurements.
  • PublicationOpen Access
    M-wave changes caused by brief voluntary and stimulated isometric contractions
    (Springer, 2023) Rodríguez Falces, Javier; Malanda Trigueros, Armando; Navallas Irujo, Javier; Place, Nicolas; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Introduction Under isometric conditions, the increase in muscle force is accompanied by a reduction in the fbers’ length. The efects of muscle shortening on the compound muscle action potential (M wave) have so far been investigated only by computer simulation. This study was undertaken to assess experimentally the M-wave changes caused by brief voluntary and stimulated isometric contractions. Methods Two diferent methods of inducing muscle shortening under isometric condition were adopted: (1) applying a brief (1 s) tetanic contraction and (2) performing brief voluntary contractions of diferent intensities. In both methods, supramaximal stimulation was applied to the brachial plexus and femoral nerves to evoke M waves. In the frst method, electrical stimulation (20 Hz) was delivered with the muscle at rest, whereas in the second, stimulation was applied while participants performed 5-s stepwise isometric contractions at 10, 20, 30, 40, 50, 60, 70, and 100% MVC. The amplitude and duration of the frst and second M-wave phases were computed. Results The main fndings were: (1) on application of tetanic stimulation, the amplitude of the M-wave frst phase decreased (~10%, P<0.05), that of the second phase increased (~50%, P<0.05), and the M-wave duration decreased (~20%, P<0.05) across the frst fve M waves of the tetanic train and then plateaued for the subsequent responses; (2) when superimposing a single electrical stimulus on muscle contractions of increasing forces, the amplitude of the M-wave frst phase decreased (~20%, P<0.05), that of the second phase increased (~30%, P<0.05), and M-wave duration decreased (~30%, P<0.05) as force was raised from 0 to 60–70% MVC force. Conclusions The present results will help to identify the adjustments in the M-wave profle caused by muscle shortening and also contribute to diferentiate these adjustments from those caused by muscle fatigue and/or changes in Na+–K+ pump activity.
  • PublicationOpen Access
    Association of intrinsic capacity with respiratory disease mortality
    (Elsevier, 2023) Ramírez Vélez, Robinson; Iriarte-Fernández, María; Santafé Rodrigo, Guzmán; Malanda Trigueros, Armando; Beard, John R.; García Hermoso, Antonio; Izquierdo Redín, Mikel; Ciencias de la Salud; Estadística, Informática y Matemáticas; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute for Advanced Materials and Mathematics - INAMAT2; Osasun Zientziak; Estatistika, Informatika eta Matematika; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    The World Health Organization (WHO) introduced a framework for healthy aging in 2015 that emphasizes functional ability instead of absence of disease. Healthy ageing is defined as “the process of building and maintaining the functional ability that enables well-being”. This framework considers an individual’s intrinsic capacity (IC), environment, and the interaction between them to determine functional ability. In this prospective cohort study, we investigated the link between mortality and various respiratory diseases in almost half a million adults who are part of the UK Biobank. We derived an IC score using measures from 4 of the 5 domains: two for psychological capacity, two for sensory capacity, two for vitality and one for locomotor capacity. The exposure variable in the study was the number of reported factors, which was summed and categorized into IC scores of zero, one, two, three, or at least four. The outcome was respiratory disease-related mortality, which was linked to national mortality records. The follow-up period started from participants’ inclusion in the UK Biobank study (2006–2010) and ended on December 31, 2021, or the participant’s death was censored. The average follow-up was 10.6 years (IQR 10.0; 11.3). During a median follow-up period of 10.6 years, 27,251 deaths were recorded. Out of these, 7.5% (2059) were primarily attributed to respiratory disease. The results showed that a higher IC score (+4 points) was associated with a significantly increased risk of respiratory disease mortality, with HRs of 3.34 [2.64 to 4.23] for men (C-index = 0.83) and 3.87 [2.86 to 5.23] for women (C-index = 0.84), independent of major confounding factors (P < 0.001). Our study provides evidence that lower levels of the WHO’s IC construct are associated with increased risk of mortality and various adverse health outcomes. The IC construct, which is easily and inexpensively measured, holds great promise for transforming geriatric care worldwide, including in regions without established geriatric medicine.
  • PublicationOpen Access
    Recovery of the first and second phases of the M wave after prolonged maximal voluntary contractions
    (Elsevier, 2019-12-26) Rodríguez Falces, Javier; Malanda Trigueros, Armando; Lavilla Oiz, Ana; Navallas Irujo, Javier; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza
    Introduction: We compared the recovery of muscle electrical properties after maximal voluntary contractions (MVCs) of 1 and 3 min duration by examining separately the first and second phases of the muscle compound action potential (M wave). Methods: M waves were evoked by supramaximal single shocks to the femoral nerve throughout the 30-min recovery following 1-min and 3-min MVCs. The amplitude, duration, and area of the M-wave first and second phases, along with peak-to-peak amplitude and total area, were measured from the knee extensors. Results: (1) The amplitude of the M-wave first phase increased to the same extent (and had the same time course of recovery) after the 1 and 3-min MVCs, whereas the amplitude of the second phase increased more markedly after the 1-min than after the 3-min MVC (P < 0.05). (2) The first phase remained enlarged for 2 min after exercise, whereas the augmentation of the second phase only lasted for 30 s. (3) After 30 min of recovery, the amplitude, area, and duration of both the first and second phases were decreased compared to control values (P < 0.05). Conclusions: The similar enlargement of the M-wave first phase after the 1 and 3-min MVCs suggests that the extracellular K+ concentration attained after these contractions was similar. The mechanisms responsible for the long-term decreases in M-wave amplitude and duration are unknown at present, but are likely due to a decrease in the amplitude of individual transmembrane potentials and an increase in conduction velocity.