Braco Sola, Elisa

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Braco Sola

First Name

Elisa

person.page.departamento

Ingeniería Eléctrica, Electrónica y de Comunicación

person.page.instituteName

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 1 of 1
  • PublicationOpen Access
    Experimental assessment of first- and second-life electric vehicle batteries: performance, capacity dispersion, and aging
    (IEEE, 2021) Braco Sola, Elisa; San Martín Biurrun, Idoia; Berrueta Irigoyen, Alberto; Sanchis Gúrpide, Pablo; Ursúa Rubio, Alfredo; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa; Gobierno de Navarra / Nafarroako Gobernua
    Nowadays, the reuse of electric vehicle batteries is considered to be a feasible alternative to recycling, as it allows them to benefit from their remaining energy capacity and to enlarge their lifetime. Stationary applications, such as self-consumption or off-grid systems support, are examples of second-life (SL) uses for retired batteries. However, reused modules that compose these batteries have heterogeneous properties, which limit their performance. This article aims to assess the influence of degradation in modules from electric vehicles, covering three main aspects: performance, capacity dispersion, and extended SL behavior. First, a complete characterization of new and reused modules is carried out, considering three temperatures and three discharge rates. In the second stage, intra- and intermodule capacity dispersions are evaluated with new and reused samples. Finally, the behavior during SL is also analyzed, through an accelerated cycling test so that the evolution of capacity and dispersion are assessed. Experimental results show that the performance of reused modules is especially undermined at low temperatures and high current rates, as well as in advanced stages of aging. The intramodule dispersion is found to be similar in reused and new samples, while the intermodule differences are nearly four times greater in SL.