Person:
Diéguez Elizondo, Pedro

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Diéguez Elizondo

First Name

Pedro

person.page.departamento

Ingeniería

person.page.instituteName

ORCID

0000-0002-8375-4734

person.page.upna

372

Name

Search Results

Now showing 1 - 2 of 2
  • PublicationOpen Access
    Acoustic and psychoacoustic levels from an internal combustion engine fueled by hydrogen vs. gasoline
    (Elsevier, 2022) Arana Burgui, Miguel; San Martín Murugarren, Ricardo; Urroz Unzueta, José Carlos; Diéguez Elizondo, Pedro; Gandía Pascual, Luis; Zientziak; Ingeniaritza; Institute for Advanced Materials and Mathematics - INAMAT2; Ciencias; Ingeniería; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Whereas noise generated by road traffic is an important factor in urban pollution, little attention has been paid to this issue in the field of hydrogen-fueled vehicles. The objective of this study is to analyze the influence of the type of fuel (gasoline or hydrogen) on the sound levels produced by a vehicle with an internal combustion engine. A Volkswagen Polo 1.4 vehicle adapted for its bi-fuel hydrogen-gasoline operation has been used. Tests were carried out with the vehicle when stationary to eliminate rolling and aerodynamic noise. Acoustics and psychoacoustics levels were measured both inside and outside the vehicle. A slight increase in the noise level has only been found outside when using hydrogen as fuel, compared to gasoline. The increase is statistically significant, can be quantified between 1.1 and 1.7 dBA and is mainly due to an intensification of the 500 Hz band. Loudness is also higher outside the vehicle (between 2 and 4 sones) when the fuel is hydrogen. Differences in sharpness and roughness values are lower than the just-noticeable difference (JND) values of the parameters. Higher noise levels produced by hydrogen can be attributed to its higher reactivity compared to gasoline.
  • PublicationOpen Access
    Conversion of a commercial gasoline vehicle to run bi-fuel (hydrogen-gasoline)
    (Elsevier, 2012) Sáinz Casas, David; Diéguez Elizondo, Pedro; Sopena Serna, Carlos; Urroz Unzueta, José Carlos; Gandía Pascual, Luis; Ingeniería; Ingeniaritza
    Bi-fuel internal combustion engine vehicles allowing the operation with gasoline or diesel and hydrogen have great potential for speeding up the introduction of hydrogen in the transport sector. This would also contribute to alleviate the problem of urban air pollution. In this work, the modifications carried out to convert a Volkswagen Polo 1.4 into a bi-fuel (hydrogen-gasoline) car are described. Changes included the incorporation of a storage system based on compressed hydrogen, a machined intake manifold with a low-pressure accumulator where the hydrogen injectors were assembled, a new electronic control unit managing operation on hydrogen and an electrical junction box to control the change from a fuel to another. Change of fuel is very simple and does not require stopping the car. Road tests with hydrogen fuel gave a maximum speed of 125 km/h and an estimated consumption of 1 kg of hydrogen per 100 km at an average speed of 90 km/h. Vehicle conversion to bi-fuel operation is technically feasible and cheap.