Lo, Yueh-Hsin
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Lo
First Name
Yueh-Hsin
person.page.departamento
Ciencias
person.page.instituteName
IMAB. Research Institute for Multidisciplinary Applied Biology
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
22 results
Search Results
Now showing 1 - 10 of 22
Publication Open Access Drought limits tree growth more than greenness and reproduction: insights from five case studies in Spain(KeAi Communications, 2025-08-01) Camarero, Jesús Julio; Rubio-Cuadrado, Álvaro; González de Andrés, Ester; Valeriano, Cristina; Pizarro, Manuel; Imbert Rodríguez, Bosco; Lo, Yueh-Hsin; Blanco Vaca, Juan Antonio; Ciencias; Zientziak; Institute for Multidisciplinary Research in Applied Biology - IMABDroughts impact forests by influencing various processes such as canopy greenness, tree growth, and reproduction, but most studies have only examined a few of these processes. More comprehensive assessments of forest responses to climate variability and water shortages are needed to improve forecasts of post-drought dynamics. Iberian forests are well-suited for evaluating these effects because they experience diverse climatic conditions and are dominated by various conifer and broadleaf species, many of which exhibit masting. We assessed how greenness, evaluated using the normalized difference vegetation index (NDVI), tree radial growth, and seed or cone production responded to drought in five tree species (three conifers: silver fir (Abies alba), Scots pine (Pinus sylvestris), and stone pine (Pinus pinea); two broadleaves: European beech (Fagus sylvatica) and holm oak (Quercus ilex) inhabiting sites with different aridity. We correlated these data with the standardized precipitation evapotranspiration index (SPEI) using the climate window analysis (climwin) package, which identifies the most relevant climate window. Drought constrained growth more than greenness and seed or cone production. Dry conditions led to high seed or cone production in species found in cool, moist sites (silver fir, beech, and Scots pine). We also found negative associations of cone production with summer SPEI in the drought-tolerant stone pine, which showed lagged growth−cone negative correlations. However, in the seasonally dry holm oak forests, severe droughts constrained both growth and acorn production, leading to a positive correlation between these variables. Drought impacts on greenness, growth, seed, and cone production depended on species phenology and site aridity. A negative correlation between growth and reproduction does not necessarily indicate trade-offs, as both may be influenced by similar climatic factors.Publication Open Access CO2 fertilization plays a minor role in long-term carbon accumulation patterns in temperate pine forests in the southwestern Pyrenees(Elsevier, 2019) Lo, Yueh-Hsin; Blanco Vaca, Juan Antonio; González de Andrés, Ester; Imbert Rodríguez, Bosco; Castillo Martínez, Federico; Institute for Multidisciplinary Research in Applied Biology - IMABIsolating the long-term fertilization effect of CO 2 from other climate- and site-related effects on tree growth has been proven a challenging task. To isolate long-term effects of [CO2] on water use efficiency at ecosystem level, we used the FORECAST Climate forest model, calibrated for Scots pine (Pinus sylvestris L.) forests in the southwestern Pyrenees, growing at a Mediterranean montane site and at a continental subalpine site. Future climate scenarios (RCP 4.5 and RCP 8.5) were generated using a battery of six climate models to estimate daily values of temperature and precipitation in a 90-year series. A factorial experiment was designed to disentangle the importance on C pools of three growing limiting factors (nitrogen limitation, climate (temperature + precipitation) limitation and atmospheric CO 2 concentration). The relative importance of each factor was quantified by comparing the scenario with the limitation of each individual factor turned on with the non-limitation scenario. Positive CO 2 fertilization due to improvement in water use efficiency was detected by the model, but its quantitative impact improving tree growth was minimum: its average increase in ecosystem C pools ranged from 0.3 to 0.9%. At the site with cooler climate conditions (continental), the main limitation for tree growth was climate. Such limitation will be reduced under climate change and the ecosystem will store more carbon. At the site with milder climate conditions (Mediterranean), N availability was the main limiting factor albeit modulated by water availability. Such limitation could be reduced under climate change as N cycling could accelerate (higher litterfall production and decomposition rates) but also increase if droughts become more frequent and severe. In addition, the magnitude of the uncertainty related to climate model selection was much more important than CO 2 fertilization, indicating that atmospheric processes are more important than tree physiological processes when defining how much carbon could be gained (or lost) in forests under climate change. In conclusion, due to the small changes in forest C pools caused by variation of atmospheric CO 2 concentrations compared to changes caused by other growth limiting factors (nutrients, climate), reducing uncertainty related to climate projections seems a more efficient way to reduce uncertainty in tree growth projections than increasing forest model complexity.Publication Open Access Productivity of forests ecoystems(Earthscan, 2017) Blanco Vaca, Juan Antonio; Lo, Yueh-Hsin; Welham, Clive; Larson, Bruce; Ciencias del Medio Natural; Natura Ingurunearen ZientziakIn this chapter, we examine both the factors affecting forest ecosystem productivity, and the ways that forest management can influence these. Much forestry training is related to the manner in which productivity can be measured and monitored, but here we assume that readers have this basic level of training, and it is not further elaborated.Publication Open Access Douglas-fir radial growth in interior British Columbia can be linked to long-term oscillations in Pacific and Atlantic sea surface temperatures(NCR Research Press, 2017) Lo, Yueh-Hsin; Blanco Vaca, Juan Antonio; Guan, Biing T.; Ciencias del Medio Natural; Natura Ingurunearen ZientziakA major problem in modern dendrochronology is that the methods traditionally used for linking tree ring growth data to climate records are not well suited to reconstructing low-frequency climatic variations. In this study, we explored the alternative Ensemble Empirical Mode Decomposition to detrend tree-ring records and to extract climate signals without removing low-frequency information. Tree cores of Pseudotsuga menziesii var. glauca (Mayr.) Franco were examined in a semi-arid forest in southern interior British Columbia, western Canada. Ring width data were decomposed into five oscillatory components (intrinsic mode functions, IMFs) of increasingly longer periodicities. IMF 1 was considered white noise, IMF 2 was used to create the first diameter growth index (DGI-1), IMF 3 and IMF 4 were combined to create the second diameter growth index (DGI-2), whereas IMF 5 and the residual term together were considered as the trend term. The highest significant cross-correlations between DGI-1 and the NAOAugust, NIÑO12May, and PDOJanuary indices were found at 1-year lags. DGI-2 had positive and persistent correlations with NAOJune and PDOMay at 0 to 3 years lags, and with NAOMay at 2 and 3 years lags. Our results indicate that periods of slow growth in the tree ring record matched periods of drought in the North American Pacific Northwest. Such water limiting conditions are likely caused by oscillatory patterns in the Pacific Ocean sea surface temperatures that influence precipitation in the Pacific Northwest. These drought events are likely exacerbated by changes in winter precipitation (snowpack) related to oscillations of the Atlantic Ocean sea surface temperatures, highlighting the ecological effects of both oceans on terrestrial ecosystems. Such relationships could not be easily found by traditional tree-ring analysis that remove some of the low-frequency signal, and therefore we suggest Ensemble Empirical Mode Decomposition as an additional tool to establishing tree growth-climate relationships.Publication Open Access Calculadora de sostenibilidad FIRST-Heat Navarra: generando energía sostenible al reducir el riesgo de incendios forestales en comunidades rurales(Sociedad Española de Ciencias Forestales, 2020) Candel Pérez, David; Blanco Vaca, Juan Antonio; Lo, Yueh-Hsin; Montero, Eduardo; Barrena Figueroa, Ramo; Castillo Martínez, Federico; Ciencias; Zientziak; Gestión de Empresas; Enpresen KudeaketaEl cambio climático, la expansión urbanística o el aumento del uso recreativo en zonas forestales están aumentando la probabilidad de ocurrencia de incendios forestales. Las comunidades rurales pueden afrontar la oportunidad de combinar actividades silvícolas para reducir el riesgo de incendios con el desarrollo energético basado en el aprovechamiento de la biomasa forestal generada. Para demostrar la viabilidad de este tipo de gestión, se ha creado una herramienta informática demostrativa de apoyo a la toma de decisiones. Mediante la modificación y calibración del modelo ecológico FORECAST, se simularon las condiciones de diferentes localidades y especies forestales de Navarra. Sobre dichas simulaciones, se ha desarrollado la interfaz de usuario de esta calculadora (Fire Interface Rural Screening Tool for Heating: FIRST-Heat Navarra), que pretende estimar la sostenibilidad ecológica y socio-económica del uso de la biomasa forestal a nivel local. Esta herramienta se muestra capaz de simular los efectos del cambio en las condiciones de crecimiento del bosque mediante un modelo ecológico dinámico. También presenta la capacidad de integrar, resumir y comunicar de forma efectiva el último conocimiento científico sobre ecología forestal, y el conocimiento técnico, económico y social sobre la tecnología de calefacción de distrito a partir de biomasa.Publication Open Access Adaptive responses to thinning: growth and sensitivity to hydric and thermal stress in four widely planted pine species(Elsevier, 2025-10-15) Manrique-Alba, Àngela; Beguería, Santiago; Camarero, Jesús Julio; Molina, Antonio J.; Barberá, Gonzalo G.; Blanco Vaca, Juan Antonio; Cachinero Vivar, Antonio M.; Castillo, Víctor M.; Campo, Antonio D. del; Hernández, Álvaro; Imbert Rodríguez, Bosco; Jiménez, María N.; Lo, Yueh-Hsin; Lucas Borja, Manuel Esteban; Moreno, Gerardo; Navarro, Francisco B.; Navarro Cerrillo, Rafael M.; Ripoll, María Ángeles ; Sánchez-Miranda, Ángela; Ciencias; Zientziak; Institute for Multidisciplinary Research in Applied Biology - IMABIn seasonally dry areas, thinning has been proposed as a measure of adaptive forest management to enhance growth and increase drought resistance and resilience. However, long-term growth data on different tree species and site conditions remain scarce for investigating the interactions between thinning and climatic stressors. To fill that research gap, we examined radial growth and its sensitivity to climatic conditions in 19 experimental sites of the four most planted pine species in Spain (Pinus halepensis, P. pinaster, P. nigra, and P. sylvestris). We also assessed the influence of thinning at varying intensities on growth responsiveness to climate stress. To quantify how climate impacts growth, we used seasonal temperature and water balance anomalies expressed as temperature and drought indices. Thinning consistently enhanced tree growth for 8–20 years, with the magnitude of this effect modulated by hydric conditions. While drought reduced growth, wetter conditions promoted it—particularly in mesic species such as P. sylvestris and P. nigra. Importantly, thinning increased trees’ sensitivity to climate: thinned stands—especially those of P. halepensis and P. sylvestris—became more responsive to water availability, exhibiting stronger growth increases during wet years following thinning. Temperature also played a key role, with high spring and autumn temperature anomalies enhancing growth, comparable in magnitude to favorable hydric conditions. However, in the post-thinning period, spring temperature effects were lower than prior to thinning in species from xeric sites (P. halepensis and P. pinaster). High summer temperature anomalies negatively affected growth, though more weakly and only in species from xeric sites. Thinning, however, aggravated the negative effects of summer temperatures on growth in xeric sites and induced negative effects on growth in mesic sites. These findings highlight the species-specific interactions between thinning, water availability, and temperature stress, emphasizing the need for tailored, species- and site-specific adaptive management strategies of planted forests in response to climate change.Publication Open Access Multiple pathway succession in coastal Tsuga heterophylla, Thuja plicata and Abies amabilis forests on northeastern Vancouver Island, British Columbia(NRC Research Press, 2014) Weber, Adrian; Kimmins, J.P. (Hamish); Gilbert, Benjamin; Lo, Yueh-Hsin; Blanco Vaca, Juan Antonio; Ciencias del Medio Natural; Natura Ingurunearen ZientziakSustainable forest practices are often designed to mimic natural disturbance and successional processes, yet succession is poorly understood in many ecosystems. On northeastern Vancouver Island, the ‘disturbance hypothesis’ is a widely-assumed succession model that asserts shade tolerant western redcedar (Thuja plicata) and the ericaceous shrub salal (Gaultheria shallon) invade and colonize highly productive western hemlock (Tsuga heterophylla) – Pacific silver fir (Abies amabilis) stands (HA) on zonal sites in the absence of stand-replacing wind disturbance. This leads to the development of low productivity, low density, uneven-aged, open-crowned redcedar-hemlock-salal stands (CH). In conflict with this model, old, apparently stable HA stands lacking redcedar can be found on such sites as well. We sought evidence for the predicted transition to CH stands by examining stand composition, crown closure, tree size class frequency distributions, salal cover, and redcedar establishment on young HA (~90 years old), old HA (>160 years), and CH (>160 years) stands. When adjacent to a redcedar stand, young HA stands had fewer redcedar seedlings but more redcedar adult trees than old HA stands. However, redcedar abundance did not differ between young and old HA stands at distances further than 10 m from adjacent redcedar stands. This could indicate that redcedar recruits into HA stands at stand establishment, and that redcedar seedling establishment is low under the thick canopy of young HA stands. The chronosequence data also suggest that both old HA and CH stands are self-replacing stand types in these forests, contrary to the disturbance hypothesis. We develop a new, multi-pathway model for this ecosystem that is based on the chronosequence data and life-history traits of the focal tree species, and suggest that disturbance plays a role opposite to the equilibrium model.Publication Open Access Maintaining ecosystem function by restoring forest biodiversity: reviewing decision-support tools that link biology, hydrology and geochemistry(InTech, 2015) Lo, Yueh-Hsin; Blanco Vaca, Juan Antonio; Welham, Clive; Wang, Mike; Ciencias del Medio Natural; Natura Ingurunearen ZientziakNot all forest models are applicable to a meta-modelling approach. Hence, the objective of the research presented here was to identify and compare the available forest models already being used in research, and to evaluate their suitability for use as decision-support tools in designing successful restoration plans to bring forest biodiversity and function back to sites disturbed by industrial activities (mining in particular).Publication Open Access Drought-induced changes in wood density are not prevented by thinning in Scots pine stands(MDPI, 2018) Candel Pérez, David; Lo, Yueh-Hsin; Blanco Vaca, Juan Antonio; Chiu, Chih-Ming; Camarero, Jesús Julio; González de Andrés, Ester; Imbert Rodríguez, Bosco; Castillo Martínez, Federico; Ciencias del Medio Natural; Natura Ingurunearen ZientziakDensity is an important wood mechanical property and an indicator of xylem architecture and hydraulic conductivity. It can be influenced by forest management and climate. We studied the impact of thinning and climate variables on annual stem radial growth (ring width and ring density, and their earlywood and latewood components) in two contrasting Scots pine (Pinus sylvestris L.) stands in northern Spain (one continental, one Mediterranean). At each site, three thinning regimes (control or T0, removing 20% basal area or T20, and removing 30% or T30) were randomly applied to nine plots per site (three plots per treatment) in 1999. Thinning was repeated at the Mediterranean site in 2009 (increasing thinning intensity in T30 to 40%). Eight trees per plot were cored in spring 2014. Second thinning at the Mediterranean site and first thinning at the continental site generally caused significantly wider ring (RW), earlywood (EW) and latewood (LW) widths, although no differences between T20 and T30/40 were found, supporting in part the common observation that radial growth is enhanced following thinning as competition for water and nutrients is reduced. At the Mediterranean site, values of latewood density (LD) and maximum density (Dmax) relative to pre-thinning conditions were significantly lower in T0 than in T30. However, at the continental site, relative changes of ring density (RD) and LD were significantly higher in T0 than in T20 and T30. Climate significantly affected not only RWbut also RD, with significant RD drops during or right after unusually warm-dry years (e.g., 2003, 2011), which were characterized by LD reductions between 5.4 and 8.0%. Such RD decreases were quickly followed by recovery of pre-drought density values. These results indicate trees temporarily reduce LD as a way to enhance hydraulic conductivity during dry summers. However, climate effects on wood density were site-dependent. We also detected that the thinning effect was not intense enough to prevent drought-induced changes in wood density by altering water availability, but it could help to reduce wood properties fluctuations and therefore maintain more homogeneous wood mechanic features.Publication Open Access Land use change effects on carbon and nitrogen stocks in the Pyrenees during the last 150 years: a modelling approach(Elsevier, 2015) Lo, Yueh-Hsin; Blanco Vaca, Juan Antonio; Canals Tresserras, Rosa María; González de Andrés, Ester; San Emeterio Garciandía, Leticia; Imbert Rodríguez, Bosco; Castillo Martínez, Federico; Ciencias del Medio Natural; Natura Ingurunearen ZientziakIn the southern Pyrenees, human population and therefore land uses have changed from forests to pastures, then crops, and back to pastures and secondary forests during the last two centuries. To understand what such rapid land use changes have meant for carbon (C) and nitrogen (N) stocks, we used data from two forest sites in the western Pyrenees, combined with regional data on pastures and crop production (potato, cereal), to calibrate the ecosystem-level model FORECAST. Then, we simulated 150-year of land use for each site, emulating historical changes. Our estimates show that the conversion from forests into pastures and crops created C and N deficits (378-427 Mg C ha-1, 4.0-4.6 Mg N ha-1) from which these sites are still recovering. The main ecological process behind the creation of these deficits was the loss of the ecological legacy of soil organic matter (SOM) created by the forest, particularly during conversion to farming. Pastures were able to reverse, stop or at least slow down the loss of such legacy. In conclusion, our work shows the deep impact of historical land use in ecosystem attributes, both in magnitude of removed C and N stocks and in duration of such impact. Also, the usefulness of ecological modelling in absence of historical data to estimate such changes is showcased, providing a framework for potential C and N stocks to be reached by climate change mitigation measures such as forest restoration.
- «
- 1 (current)
- 2
- 3
- »