Aparicio Tejo, Pedro María
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Aparicio Tejo
First Name
Pedro María
person.page.departamento
Ciencias
person.page.instituteName
IMAB. Research Institute for Multidisciplinary Applied Biology
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
2 results
Search Results
Now showing 1 - 2 of 2
Publication Open Access Insights into the regulation of nitrogen fixation in pea nodules: lessons from drought, abscisic acid and increased photoassimilate availability(EDP Sciences, 2001) González García, Esther; Gálvez, Loli; Royuela Hernando, Mercedes; Aparicio Tejo, Pedro María; Arrese-Igor Sánchez, César; Ciencias del Medio Natural; Natura Ingurunearen ZientziakNitrogen fixation in legume nodules has been shown to be very sensitive to drought and other environmental constraints. It has been widely assumed that this decline in nitrogen fixation was a consequence of an increase in the so-called oxygen diffusion barrier and a subsequent impairment to bacteroid respiration. However, it has been recently shown that nitrogen fixation is highly correlated with nodule sucrose synthase (SS) activity under drought and other environmental stresses. Whether this correlation reflects a causative relationship or not has not been proven yet. The evidence presented here suggests that SS controls nitrogen fixation under mild drought conditions. However, nitrogen fixation cannot be enhanced only by increasing glycolytic flux, as under these conditions nodules become oxygen limited. Abscisic acid also induces a decline in nitrogen fixation that is independent of SS. The overall results suggest the occurrence of a complex regulation of nodule nitrogen fixation involving, at least, both carbohydrate and oxygen fluxes within the nodule.Publication Open Access A self-induction method to produce high quantities of recombinant functional flavo-leghemoglobin reductase(Elsevier, 2008-01-29) Urarte Rodríguez, Estíbaliz; Auzmendi, Iñigo; Rol, Selene; Ariz Arnedo, Idoia; Aparicio Tejo, Pedro María; Arredondo-Peter, Raúl; Morán Juez, José Fernando; Institute for Multidisciplinary Research in Applied Biology - IMAB; Gobierno de Navarra / Nafarroako GobernuaFerric leghemoglobin reductase (FLbR) is able to reduce ferric leghemoglobin (Lb3+) to ferrous (Lb2+) form. This reaction makes Lb functional in performing its role since only reduced hemoglobins bind O2. FLbR contains FAD as prosthetic group to perform its activity. FLbR-1 and FLbR-2 were isolated from soybean root nodules and it has been postulated that they reduce Lb3+. The existence of Lb2+ is essential for the nitrogen fixation process that occurs in legume nodules; thus, the isolation of FLbR for the study of this enzyme in the nodule physiology is of interest. However, previous methods for the production of recombinant FLbR are inefficient as yields are too low. We describe the production of a recombinant FLbR-2 from Escherichia coli BL21(DE3) by using an overexpression method based on the self-induction of the recombinant E. coli. This expression system is four times more efficient than the previous overexpression method. The quality of recombinant FLbR-2 (based on spectroscopy, SDS-PAGE, IEF, and native PAGE) is comparable to that of the previous expression system. Also, FLbR-2 is purified near to homogeneity in only few steps (in a time scale, the full process takes 3 days). The purification method involves affinity chromatography using a Ni-nitrilotriacetic acid column. Resulting rFLbR-2 showed an intense yellow color, and spectral characterization of rFLbR-2 indicated that rFLbR-2 contains flavin. Pure rFLbR-2 was incubated with soybean Lba and NADH, and time drive rates showed that rFLbR-2 efficiently reduces Lb3+.