Aparicio Tejo, Pedro María
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Aparicio Tejo
First Name
Pedro María
person.page.departamento
Ciencias
person.page.instituteName
IMAB. Research Institute for Multidisciplinary Applied Biology
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
27 results
Search Results
Now showing 1 - 10 of 27
Publication Open Access Integration of a communal henhouse and community composter to increase motivation in recycling programs: overview of a three-year pilot experience in Noáin (Spain)(MDPI, 2018) Storino, Francesco; Plana, Ramón; Aparicio Tejo, Pedro María; Muro Erreguerena, Julio; Irigoyen Iriarte, Ignacio; Ciencias del Medio Natural; Natura Ingurunearen Zientziak; Producción Agraria; Nekazaritza EkoizpenaThis paper presents a three-year pilot experience of a new municipal waste management system developed in Navarre, Spain that integrates composting and hens. The aim of this new system is to motivate the general public to participate more in waste prevention programs. The Composter-Henhouse (CH) is a compact facility comprised of a henhouse and three composters. This is shared by 30 families who provide the organic part of their kitchen waste to feed the hens. Hens help speed up the composting process by depositing their droppings and turning the organic residue into compost. This study assesses the CH in terms of treatment capacity, the technical adequacy of the composting process, the quality and safety of the compost obtained and some social aspects. Over three years, the CH has managed nearly 16.5 tons of organic waste and produced approximately 5600 kg of compost and more than 6000 high-quality fresh eggs. No problems or nuisances have been reported and the level of animal welfare has been very high. The follow up of the composting process (temperature, volume reduction and compost maturity) and a physicochemical and microbiological analysis of the compost have ensured the proper management of the process. The level of involvement and user satisfaction has been outstanding and the project has presented clear social benefits.Publication Open Access High irradiance increases NH4+ tolerance in Pisum sativum: higher carbon and energy availability improve ion balance but not N assimilation(Elsevier, 2011-03-02) Ariz Arnedo, Idoia; Artola Rezola, Ekhiñe; Asensio, Aarón C.; Cruchaga Moso, Saioa; Aparicio Tejo, Pedro María; Morán Juez, José Fernando; Ciencias del Medio Natural; Natura Ingurunearen Zientziak; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua; Institute for Multidisciplinary Research in Applied Biology - IMABThe widespread use of NO3− fertilization has had a major ecological impact. NH4+ nutrition may help to reduce this impact, although high NH4+ concentrations are toxic for most plants. The underlying tolerance mechanisms are not yet fully understood, although they are thought to include the limitation of C, the disruption of ion homeostasis, and a wasteful NH4+ influx/efflux cycle that carries an extra energetic cost for root cells. In this study, high irradiance (HI) was found to induce a notable tolerance to NH4+ in the range 2.5–10 mM in pea plants by inducing higher C availability, as shown by carbohydrate content. This capacity was accompanied by a general lower relative N content, indicating that tolerance is not achieved through higher net N assimilation on C-skeletons, and it was also not attributable to increased GS content or activity in roots or leaves. Moreover, HI plants showed higher ATP content and respiration rates. This extra energy availability is related to the internal NH4+ content regulation (probably NH4+ influx/efflux) and to an improvement of the cell ionic balance. The limited C availability at lower irradiance (LI) and high NH4+ resulted in a series of metabolic imbalances, as reflected in a much higher organic acid content, thereby suggesting that the origin of the toxicity in plants cultured at high NH4+ and LI is related to their inability to avoid large-scale accumulation of the NH4+ ion.Publication Open Access Isotopic composition of maize as related to N-fertilization and irrigation in the Mediterranean region(Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, 2011) Lasa Larrea, Berta; Irañeta, Iosu; Muro Erreguerena, Julio; Irigoyen Iriarte, Ignacio; Aparicio Tejo, Pedro María; Natura Ingurunearen Zientziak; Nekazaritza Ekoizpena; Ciencias del Medio Natural; Producción Agraria; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua; Gobierno de Navarra / Nafarroako Gobernua, 17/2004Nitrate leaching as a result of excessive application of N-fertilizers and water use is a major problem of vulnerable regions. The farming of maize requires high N fertilization and water inputs in Spain. Isotopic techniques may provide information on the processes involved in the N and C cycles in farmed areas. The aim of this work was studying the impact of sprinkler and furrow irrigation and N input on maize (Zea mays L.) yields, and whether isotopic composition can be used as indicator of best farming practices. Trials were set up in Tudela (Spain) with three rates of N fertilization (0, 240 and 320 kg urea-N ha–1) and two irrigation systems (furrow and sprinkler). Yield, nitrogen content, irrigation parameters, N fate and C and N isotope composition were determined. The rate of N fertilization required to obtain the same yield is considerably higher under furrow irrigation, since the crop has less N at its disposal in furrow irrigation as a result of higher loss of nitrogen by NO3 –-N leaching and denitrification. A lower δ13C in plants under furrow irrigation was recorded.The δ15N value of plant increased with the application rate of N under furrow irrigation.Publication Open Access Expression and localization of a Rhizobium-derived cambialistic superoxide dismutase in pea (Pisum sativum) nodules subjected to oxidative stress(The American Phytopathological Society, 2011-09-07) Asensio, Aarón C.; Marino Bilbao, Daniel; James, Euan K.; Ariz Arnedo, Idoia; Arrese-Igor Sánchez, César; Aparicio Tejo, Pedro María; Arredondo-Peter, Raúl; Morán Juez, José Fernando; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua; Ciencias del Medio Natural; Natura Ingurunearen ZientziakTwo phylogenetically unrelated superoxide dismutase (SOD) families, i.e., CuZnSOD (copper and zinc SOD) and FeMn-CamSOD (iron, manganese, or cambialistic SOD), eliminate superoxide radicals in different locations within the plant cell. CuZnSOD are located within the cytosol and plastids, while the second family of SOD, which are considered to be of bacterial origin, are usually located within organelles, such as mitochondria. We have used the reactive oxygen species¿producer methylviologen (MV) to study SOD isozymes in the indeterminate nodules on pea (Pisum sativum). MV caused severe effects on nodule physiology and structure and also resulted in an increase in SOD activity. Purification and N-terminal analysis identified CamSOD from the Rhizobium leguminosarum endosymbiont as one of the most active SOD in response to the oxidative stress. Fractionation of cell extracts and immunogold labeling confirmed that the CamSOD was present in both the bacteroids and the cytosol (including the nuclei, plastids, and mitochondria) of the N-fixing cells, and also within the uninfected cortical and interstitial cells. These findings, together with previous reports of the occurrence of FeSOD in determinate nodules, indicate that FeMnCamSOD have specific functions in legumes, some of which may be related to signaling between plant and bacterial symbionts, but the occurrence of one or more particular isozymes depends upon the nodule type.Publication Open Access Foliar application of urea to "Sauvignon Blanc" and "Merlot" vines: doses and time of application(Springer Nature, 2012-02-19) Lasa Larrea, Berta; Menéndez Villanueva, Sergio; Sagastizabal, Kepa; Calleja Cervantes, María Eréndira; Irigoyen Iriarte, Ignacio; Muro Erreguerena, Julio; Aparicio Tejo, Pedro María; Ariz Arnedo, Idoia; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua; Producción Agraria; Nekazaritza EkoizpenaA careful control of the N nutritional status of grapevines can have a determining effect on wine characteristics; therefore a suitable management of N fertilization might allow some wine parameters to be modified, thereby improving product quality. The aim of this study was to determine the effect of foliar application of urea at different doses and different times of the growing season on the parameters of Sauvignon Blanc and Merlot grape juice. The research described herein involved Sauvignon Blanc and Merlot grapevines (V. vinifera L.) at a commercial vineyard and was conducted over 2 years. In the first year, N treatment involved a foliar application at a dose of 10 kg N ha−1 during veraison, whereas in the second year it involved a foliar urea application at two doses (10 and 50 kg N ha−1) and at three different times—3 weeks before veraison, during veraison and 3 weeks after veraison. In this second year, the urea applied at a dose of 10 kg N ha−1 was isotopically labelled with 1% 15N. Chemical parameters, yeast assimilable N, amino acid content, amino acid profile and N isotopic composition were determined for all treatments. Grape and grape-juice parameters for Merlot were found to be more affected by N fertilization than for Sauvignon Blanc and were also more affected during the second year than during the first year, thus indicating that the climatic characteristics of each campaign could affect these parameters. The yeast assimilable N in grape juice was found to be higher for late applications of foliar urea, with application of the higher dose of urea during veraison increasing the amino acid and proline contents in both varieties. The isotopic analysis data showed that the urea applied to leaves was transferred to the berries, with the maximum translocation in Sauvignon Blanc occurring for the post-veraison treatment and in Merlot for the veraison treatment. We can therefore conclude that foliar application of urea could modify grape juice quality and could therefore be used as a tool for obtaining quality wines.Publication Open Access The physiological implications of urease inhibitors on N metabolism during germination of Pisum sativum and Spinacea oleracea seeds(Elsevier, 2012-03-08) Ariz Arnedo, Idoia; Cruchaga Moso, Saioa; Lasa Larrea, Berta; Morán Juez, José Fernando; Jáuregui Mosquera, Iván; Aparicio Tejo, Pedro María; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua; Ciencias del Medio Natural; Natura Ingurunearen ZientziakThe development of new nitrogen fertilizers is necessary to optimize crop production whilst improving the environmental aspects arising from the use of nitrogenous fertilization as a cultural practice. The use of urease inhibitors aims to improve the efficiency of urea as a nitrogen fertilizer by preventing its loss from the soil as ammonia. However, although the action of urease inhibitors is aimed at the urease activity in soil, their availability for the plant may affect its urease activity. The aim of this work was therefore to evaluate the effect of two urease inhibitors, namely acetohydroxamic acid (AHA) and N-(n-butyl) thiophosphoric triamide (NBPT), on the germination of pea and spinach seeds. The results obtained show that urease inhibitors do not affect the germination process to any significant degree, with the only process affected being imbibition in spinach, thus also suggesting different urease activities for both plants. Our findings therefore suggest an activity other than the previously reported urolytic activity for urease in spinach. Furthermore, of the two inhibitors tested, NBPT was found to be the most effective at inhibiting urease activity, especially in pea seedlings.Publication Open Access Leaf δ15N as a physiological indicator of the responsiveness of N2-fixing alfalfa plants to elevated CO2, temperature and low water availability(Frontiers Media, 2015) Ariz Arnedo, Idoia; Cruz, Cristina; Neves, Tomé; Irigoyen, Juan J.; García Olaverri, Carmen; Nogués, Salvador; Aparicio Tejo, Pedro María; Aranjuelo Michelena, Iker; Estatistika eta Ikerketa Operatiboa; Natura Ingurunearen Zientziak; Estadística e Investigación Operativa; Ciencias del Medio Natural; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua; Gobierno de Navarra / Nafarroako GobernuaThe natural 15N/14N isotope composition (δ15N) of a tissue is a consequence of its N source and N physiological mechanisms in response to the environment. It could potentially be used as a tracer of N metabolism in plants under changing environmental conditions, where primary N metabolism may be complex, and losses and gains of N fluctuate over time. In order to test the utility of δ15N as an indicator of plant N status in N2-fixing plants grown under various environmental conditions, alfalfa (Medicago sativa L.) plants were subjected to distinct conditions of [CO2] (400 vs. 700 μmol mol−1), temperature (ambient vs. ambient +4°C) and water availability (fully watered vs. water deficiency—WD). As expected, increased [CO2] and temperature stimulated photosynthetic rates and plant growth, whereas these parameters were negatively affected by WD. The determination of δ15N in leaves, stems, roots, and nodules showed that leaves were the most representative organs of the plant response to increased [CO2] and WD. Depletion of heavier N isotopes in plants grown under higher [CO2] and WD conditions reflected decreased transpiration rates, but could also be related to a higher N demand in leaves, as suggested by the decreased leaf N and total soluble protein (TSP) contents detected at 700 μmol mol−1 [CO2] and WD conditions. In summary, leaf δ15N provides relevant information integrating parameters which condition plant responsiveness (e.g., photosynthesis, TSP, N demand, and water transpiration) to environmental conditions.Publication Open Access Depletion of the heaviest stable N isotope is associated with NH4+/NH3 toxicity in NH4+-fed plants(BioMed Central, 2011) Ariz Arnedo, Idoia; Cruz, Cristina; Morán Juez, José Fernando; González Moro, María Begoña; García Olaverri, Carmen; González Murua, Carmen; Martins Loucao, María A.; Aparicio Tejo, Pedro María; Estatistika eta Ikerketa Operatiboa; Estadística e Investigación Operativa; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako InstitutuaBackground: In plants, nitrate (NO3-) nutrition gives rise to a natural N isotopic signature (δ15N), which correlates with the δ15N of the N source. However, little is known about the relationship between the δ15N of the N source and the 14N/15N fractionation in plants under ammonium (NH4+) nutrition. When NH4 + is the major N source, the two forms, NH4 + and NH3, are present in the nutrient solution. There is a 1.025 thermodynamic isotope effect between NH3 (g) and NH4 + (aq) which drives to a different δ15N. Nine plant species with different NH4 +-sensitivities were cultured hydroponically with NO3 - or NH4 + as the sole N sources, and plant growth and δ15N were determined. Short-term NH4 +/NH3 uptake experiments at pH 6.0 and 9.0 (which favours NH3 form) were carried out in order to support and substantiate our hypothesis. N source fractionation throughout the whole plant was interpreted on the basis of the relative transport of NH4 + and NH3. Results: Several NO3 --fed plants were consistently enriched in 15N, whereas plants under NH4 + nutrition were depleted of 15N. It was shown that more sensitive plants to NH4 + toxicity were the most depleted in 15N. In parallel, N-deficient pea and spinach plants fed with 15NH4 + showed an increased level of NH3 uptake at alkaline pH that was related to the 15N depletion of the plant. Tolerant to NH4 + pea plants or sensitive spinach plants showed similar trend on 15N depletion while slight differences in the time kinetics were observed during the initial stages. The use of RbNO3 as control discarded that the differences observed arise from pH detrimental effects. Conclusions: This article proposes that the negative values of δ15N in NH4 +-fed plants are originated from NH3 uptake by plants. Moreover, this depletion of the heavier N isotope is proportional to the NH4 +/NH3 toxicity in plants species. Therefore, we hypothesise that the low affinity transport system for NH4 + may have two components: one that transports N in the molecular form and is associated with fractionation and another that transports N in the ionic form and is not associated with fractionation.Publication Open Access Insights into the regulation of nitrogen fixation in pea nodules: lessons from drought, abscisic acid and increased photoassimilate availability(EDP Sciences, 2001) González García, Esther; Gálvez, Loli; Royuela Hernando, Mercedes; Aparicio Tejo, Pedro María; Arrese-Igor Sánchez, César; Ciencias del Medio Natural; Natura Ingurunearen ZientziakNitrogen fixation in legume nodules has been shown to be very sensitive to drought and other environmental constraints. It has been widely assumed that this decline in nitrogen fixation was a consequence of an increase in the so-called oxygen diffusion barrier and a subsequent impairment to bacteroid respiration. However, it has been recently shown that nitrogen fixation is highly correlated with nodule sucrose synthase (SS) activity under drought and other environmental stresses. Whether this correlation reflects a causative relationship or not has not been proven yet. The evidence presented here suggests that SS controls nitrogen fixation under mild drought conditions. However, nitrogen fixation cannot be enhanced only by increasing glycolytic flux, as under these conditions nodules become oxygen limited. Abscisic acid also induces a decline in nitrogen fixation that is independent of SS. The overall results suggest the occurrence of a complex regulation of nodule nitrogen fixation involving, at least, both carbohydrate and oxygen fluxes within the nodule.Publication Open Access Leaves play a central role in the adaptation of nitrogen and sulfur metabolism to ammonium nutrition in oilseed rape (Brassica napus)(BioMed Central, 2017) Coleto, Inmaculada; Peña, Marlon de la; Rodríguez Escalante, Jon; Bejarano, Iraide; Glauser, Gaëtan; Aparicio Tejo, Pedro María; González Moro, María Begoña; Marino Bilbao, Daniel; Ciencias del Medio Natural; Natura Ingurunearen ZientziakBackground: The coordination between nitrogen (N) and sulfur (S) assimilation is required to suitably provide plants with organic compounds essential for their development and growth. The N source induces the adaptation of many metabolic processes in plants; however, there is scarce information about the influence that it may exert on the functioning of S metabolism. The aim of this work was to provide an overview of N and S metabolism in oilseed rape (Brassica napus) when exposed to different N sources. To do so, plants were grown in hydroponic conditions with nitrate or ammonium as N source at two concentrations (0.5 and 1 mM). Results: Metabolic changes mainly occurred in leaves, where ammonium caused the up-regulation of enzymes involved in the primary assimilation of N and a general increase in the concentration of N-compounds (NH4 +, amino acids and proteins). Similarly, the activity of key enzymes of primary S assimilation and the content of S-compounds (glutathione and glucosinolates) were also higher in leaves of ammonium-fed plants. Interestingly, sulfate level was lower in leaves of ammonium-fed plants, which was accompanied by the down-regulation of SULTR1 transporters gene expression. Conclusions: The results highlight the impact of the N source on different steps of N and S metabolism in oilseed rape, notably inducing N and S assimilation in leaves, and put forward the potential of N source management to modulate the synthesis of compounds with biotechnological interest, such as glucosinolates.
- «
- 1 (current)
- 2
- 3
- »