Aparicio Tejo, Pedro María

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Aparicio Tejo

First Name

Pedro María

person.page.departamento

Ciencias

person.page.instituteName

IMAB. Research Institute for Multidisciplinary Applied Biology

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 7 of 7
  • PublicationOpen Access
    Depletion of the heaviest stable N isotope is associated with NH4+/NH3 toxicity in NH4+-fed plants
    (BioMed Central, 2011) Ariz Arnedo, Idoia; Cruz, Cristina; Morán Juez, José Fernando; González Moro, María Begoña; García Olaverri, Carmen; González Murua, Carmen; Martins Loucao, María A.; Aparicio Tejo, Pedro María; Estatistika eta Ikerketa Operatiboa; Estadística e Investigación Operativa; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua
    Background: In plants, nitrate (NO3-) nutrition gives rise to a natural N isotopic signature (δ15N), which correlates with the δ15N of the N source. However, little is known about the relationship between the δ15N of the N source and the 14N/15N fractionation in plants under ammonium (NH4+) nutrition. When NH4 + is the major N source, the two forms, NH4 + and NH3, are present in the nutrient solution. There is a 1.025 thermodynamic isotope effect between NH3 (g) and NH4 + (aq) which drives to a different δ15N. Nine plant species with different NH4 +-sensitivities were cultured hydroponically with NO3 - or NH4 + as the sole N sources, and plant growth and δ15N were determined. Short-term NH4 +/NH3 uptake experiments at pH 6.0 and 9.0 (which favours NH3 form) were carried out in order to support and substantiate our hypothesis. N source fractionation throughout the whole plant was interpreted on the basis of the relative transport of NH4 + and NH3. Results: Several NO3 --fed plants were consistently enriched in 15N, whereas plants under NH4 + nutrition were depleted of 15N. It was shown that more sensitive plants to NH4 + toxicity were the most depleted in 15N. In parallel, N-deficient pea and spinach plants fed with 15NH4 + showed an increased level of NH3 uptake at alkaline pH that was related to the 15N depletion of the plant. Tolerant to NH4 + pea plants or sensitive spinach plants showed similar trend on 15N depletion while slight differences in the time kinetics were observed during the initial stages. The use of RbNO3 as control discarded that the differences observed arise from pH detrimental effects. Conclusions: This article proposes that the negative values of δ15N in NH4 +-fed plants are originated from NH3 uptake by plants. Moreover, this depletion of the heavier N isotope is proportional to the NH4 +/NH3 toxicity in plants species. Therefore, we hypothesise that the low affinity transport system for NH4 + may have two components: one that transports N in the molecular form and is associated with fractionation and another that transports N in the ionic form and is not associated with fractionation.
  • PublicationOpen Access
    Insights into the regulation of nitrogen fixation in pea nodules: lessons from drought, abscisic acid and increased photoassimilate availability
    (EDP Sciences, 2001) González García, Esther; Gálvez, Loli; Royuela Hernando, Mercedes; Aparicio Tejo, Pedro María; Arrese-Igor Sánchez, César; Ciencias del Medio Natural; Natura Ingurunearen Zientziak
    Nitrogen fixation in legume nodules has been shown to be very sensitive to drought and other environmental constraints. It has been widely assumed that this decline in nitrogen fixation was a consequence of an increase in the so-called oxygen diffusion barrier and a subsequent impairment to bacteroid respiration. However, it has been recently shown that nitrogen fixation is highly correlated with nodule sucrose synthase (SS) activity under drought and other environmental stresses. Whether this correlation reflects a causative relationship or not has not been proven yet. The evidence presented here suggests that SS controls nitrogen fixation under mild drought conditions. However, nitrogen fixation cannot be enhanced only by increasing glycolytic flux, as under these conditions nodules become oxygen limited. Abscisic acid also induces a decline in nitrogen fixation that is independent of SS. The overall results suggest the occurrence of a complex regulation of nodule nitrogen fixation involving, at least, both carbohydrate and oxygen fluxes within the nodule.
  • PublicationOpen Access
    Leaves play a central role in the adaptation of nitrogen and sulfur metabolism to ammonium nutrition in oilseed rape (Brassica napus)
    (BioMed Central, 2017) Coleto, Inmaculada; Peña, Marlon de la; Rodríguez Escalante, Jon; Bejarano, Iraide; Glauser, Gaëtan; Aparicio Tejo, Pedro María; González Moro, María Begoña; Marino Bilbao, Daniel; Ciencias del Medio Natural; Natura Ingurunearen Zientziak
    Background: The coordination between nitrogen (N) and sulfur (S) assimilation is required to suitably provide plants with organic compounds essential for their development and growth. The N source induces the adaptation of many metabolic processes in plants; however, there is scarce information about the influence that it may exert on the functioning of S metabolism. The aim of this work was to provide an overview of N and S metabolism in oilseed rape (Brassica napus) when exposed to different N sources. To do so, plants were grown in hydroponic conditions with nitrate or ammonium as N source at two concentrations (0.5 and 1 mM). Results: Metabolic changes mainly occurred in leaves, where ammonium caused the up-regulation of enzymes involved in the primary assimilation of N and a general increase in the concentration of N-compounds (NH4 +, amino acids and proteins). Similarly, the activity of key enzymes of primary S assimilation and the content of S-compounds (glutathione and glucosinolates) were also higher in leaves of ammonium-fed plants. Interestingly, sulfate level was lower in leaves of ammonium-fed plants, which was accompanied by the down-regulation of SULTR1 transporters gene expression. Conclusions: The results highlight the impact of the N source on different steps of N and S metabolism in oilseed rape, notably inducing N and S assimilation in leaves, and put forward the potential of N source management to modulate the synthesis of compounds with biotechnological interest, such as glucosinolates.
  • PublicationOpen Access
    Isotopic composition of maize as related to N-fertilization and irrigation in the Mediterranean region
    (Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, 2011) Lasa Larrea, Berta; Irañeta, Iosu; Muro Erreguerena, Julio; Irigoyen Iriarte, Ignacio; Aparicio Tejo, Pedro María; Natura Ingurunearen Zientziak; Nekazaritza Ekoizpena; Ciencias del Medio Natural; Producción Agraria; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua; Gobierno de Navarra / Nafarroako Gobernua, 17/2004
    Nitrate leaching as a result of excessive application of N-fertilizers and water use is a major problem of vulnerable regions. The farming of maize requires high N fertilization and water inputs in Spain. Isotopic techniques may provide information on the processes involved in the N and C cycles in farmed areas. The aim of this work was studying the impact of sprinkler and furrow irrigation and N input on maize (Zea mays L.) yields, and whether isotopic composition can be used as indicator of best farming practices. Trials were set up in Tudela (Spain) with three rates of N fertilization (0, 240 and 320 kg urea-N ha–1) and two irrigation systems (furrow and sprinkler). Yield, nitrogen content, irrigation parameters, N fate and C and N isotope composition were determined. The rate of N fertilization required to obtain the same yield is considerably higher under furrow irrigation, since the crop has less N at its disposal in furrow irrigation as a result of higher loss of nitrogen by NO3 –-N leaching and denitrification. A lower δ13C in plants under furrow irrigation was recorded.The δ15N value of plant increased with the application rate of N under furrow irrigation.
  • PublicationOpen Access
    Foliar application of urea to "Sauvignon Blanc" and "Merlot" vines: doses and time of application
    (Springer Nature, 2012-02-19) Lasa Larrea, Berta; Menéndez Villanueva, Sergio; Sagastizabal, Kepa; Calleja Cervantes, María Eréndira; Irigoyen Iriarte, Ignacio; Muro Erreguerena, Julio; Aparicio Tejo, Pedro María; Ariz Arnedo, Idoia; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua; Producción Agraria; Nekazaritza Ekoizpena
    A careful control of the N nutritional status of grapevines can have a determining effect on wine characteristics; therefore a suitable management of N fertilization might allow some wine parameters to be modified, thereby improving product quality. The aim of this study was to determine the effect of foliar application of urea at different doses and different times of the growing season on the parameters of Sauvignon Blanc and Merlot grape juice. The research described herein involved Sauvignon Blanc and Merlot grapevines (V. vinifera L.) at a commercial vineyard and was conducted over 2 years. In the first year, N treatment involved a foliar application at a dose of 10 kg N ha−1 during veraison, whereas in the second year it involved a foliar urea application at two doses (10 and 50 kg N ha−1) and at three different times—3 weeks before veraison, during veraison and 3 weeks after veraison. In this second year, the urea applied at a dose of 10 kg N ha−1 was isotopically labelled with 1% 15N. Chemical parameters, yeast assimilable N, amino acid content, amino acid profile and N isotopic composition were determined for all treatments. Grape and grape-juice parameters for Merlot were found to be more affected by N fertilization than for Sauvignon Blanc and were also more affected during the second year than during the first year, thus indicating that the climatic characteristics of each campaign could affect these parameters. The yeast assimilable N in grape juice was found to be higher for late applications of foliar urea, with application of the higher dose of urea during veraison increasing the amino acid and proline contents in both varieties. The isotopic analysis data showed that the urea applied to leaves was transferred to the berries, with the maximum translocation in Sauvignon Blanc occurring for the post-veraison treatment and in Merlot for the veraison treatment. We can therefore conclude that foliar application of urea could modify grape juice quality and could therefore be used as a tool for obtaining quality wines.
  • PublicationOpen Access
    Pea plant responsiveness under elevated [CO2] is conditioned by the N source (N2 fixation versus NO3 fertilization)
    (Elsevier, 2013) Aranjuelo Michelena, Iker; Cabrerizo Geijo, Pablo María; Arrese-Igor Sánchez, César; Aparicio Tejo, Pedro María; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua; Ciencias del Medio Natural; Natura Ingurunearen Zientziak
    The main goal of this study was to test the effect of [CO2] on C and N management in 2different plant organs (shoots, roots and nodules) and its implication in the 3responsiveness of exclusively N2-fixing and NO3--fed plants. For this purpose, 4exclusively N2-fixingand NO3--fed (10 mM) pea (Pisum sativumL.) plants were 5exposed to elevated [CO2] (1000 mol mol-1versus360 mol mol-1CO2). Gas 6exchange analyses, together with carbohydrate, nitrogen, total soluble proteins and 7amino acids were determined in leaves, roots and nodules. The data obtained revealed 8that although exposure to elevated [CO2] increased total dry mass (DM)in both N 9treatments, photosynthetic activity was down-regulated in NO3--fed plants, whereas N2-10fixing plants were capable of maintaining enhanced photosynthetic rates under elevated 11[CO2]. In the case of N2-fixing plants, the enhanced C sink strength of nodules enabled 12the avoidance of harmful leaf carbohydrate build up. On the other hand, in NO3--fed 13plants, elevated [CO2] caused a large increase in sucrose and starch. The increase in root 14DM did not contribute to stimulation ofC sinks in these plants. Although N2fixation 15matched plant N requirementswith the consequent increase in photosynthetic rates, in 16NO3--fed plants, exposure to elevated [CO2] negatively affected N assimilationwith the 17consequent photosynthetic down-regulation.
  • PublicationOpen Access
    Nitrogen isotope signature evidences ammonium deprotonation as a common transport mechanism for the AMT-Mep-Rh protein superfamily
    (American Association for the Advancement of Science, 2018) Ariz Arnedo, Idoia; Boeckstaens, Mélanie; Gouveia, Catarina; Martins, Ana Paula; Sanz-Luque, Emanuel; Fernández, Emilio; Soveral, Graça; Wiren, Nicolaus von; Marini, Anna M.; Aparicio Tejo, Pedro María; Cruz, Cristina; Ciencias; Zientziak
    Ammonium is an important nitrogen (N) source for living organisms, a key metabolite for pH control, and a potent cytotoxic compound. Ammonium is transported by the widespread AMT-Mep-Rh membrane proteins, and despite their significance in physiological processes, the nature of substrate translocation (NH3/NH4+) by the distinct members of this family is still a matter of controversy. Using Saccharomyces cerevisiae cells expressing representative AMT-Mep-Rh ammonium carriers and taking advantage of the natural chemical-physical property of the N isotopic signature linked to NH4+/NH3 conversion, this study shows that only cells expressing AMT-Mep-Rh proteins were depleted in N-15 relative to N-14 when compared to the external ammonium source. We observed N-15 depletion over a wide range of external pH, indicating its independence of NH3 formation in solution. On the basis of inhibitor studies, ammonium transport by nonspecific cation channels did not show isotope fractionation but competition with K+. We propose that kinetic N isotope fractionation is a common feature of AMT-Mep-Rh-type proteins, which favor N-14 over N-15, owing to the dissociation of NH4+ into NH3+ H+ in the protein, leading to N-15 depletion in the cell and allowing NH3 passage or NH3/H+ cotransport. This deprotonation mechanism explains these proteins' essential functions in environments under a low NH4+/K+ ratio, allowing organisms to specifically scavenge NH4+. We show that N-15 isotope fractionation may be used in vivo not only to determine the molecular species being transported by ammonium transport proteins, but also to track ammonium toxicity and associated amino acids excretion.