Person:
Campo Aranguren, Idoia

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Campo Aranguren

First Name

Idoia

person.page.departamento

Ingeniería Matemática e Informática

ORCID

person.page.upna

8500

Name

Search Results

Now showing 1 - 3 of 3
  • PublicationOpen Access
    Pseudo-homogeneous and heterogeneous kinetic models of the NaOH-catalyzed methanolysis reaction for biodiesel production
    (MDPI, 2021) Zabala, Silvia; Reyero Zaragoza, Inés; Campo Aranguren, Idoia; Arzamendi Manterola, María Cruz; Gandía Pascual, Luis; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2; Ciencias; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Methanolysis of vegetable oils in the presence of homogeneous catalysts remains the most important process for producing biodiesel. However, there is still a lack of accurate description of the reaction kinetics. This is in part due to the complexity of the reacting system in which a large number of interconnected reactions take place simultaneously. In this work, attention is focused on the biphasic character of the reaction medium, formed by two immiscible liquid phases. The behavior of the phases is investigated regarding their physicochemical properties, mainly density and mutual solubility of the components, as well as composition. In addition, two kinetic models with different level of complexity regarding the biphasic character of the reaction medium have been developed. It has been found that a heterogeneous model considering the presence of the two phases and the distribution of the several compounds between them is indispensable to get a good description of the process in terms of oil conversion and products yields. The model captures the effects of the main variables of an isothermal batch methanolysis process: methanol/oil molar ratio, reaction time and catalyst concentration. Nevertheless, some adjustment is still required as concerns modelling of the saponification reactions and catalyst deactivation.
  • PublicationOpen Access
    Outstanding performance of rehydrated Mg-Al hydrotalcites as heterogeneous methanolysis catalysts for the synthesis of biodiesel
    (Elsevier, 2018) Navajas León, Alberto; Campo Aranguren, Idoia; Moral Larrasoaña, Ainara; Echave, Javier; Sanz Iturralde, Oihane; Montes, Mario; Odriozola, José Antonio; Arzamendi Manterola, María Cruz; Gandía Pascual, Luis; Química Aplicada; Kimika Aplikatua; Institute for Advanced Materials and Mathematics - INAMAT2
    There is still a need for active, selective and stable heterogeneous catalysts for the synthesis of biodiesel. In this work, magnesium-aluminium hydrotalcites with Mg/Al molar ratios within the 1.5–5 range were synthesized by coprecipitation and used as transesterification catalysts for the synthesis of biodiesel. The mixed oxides obtained after calcination recovered the hydrotalcite structure in the form of meixnerite after rehydration in boiling water. The solids were characterized by XRD, TGA, N2 adsorption-desorption, and SEM. Basic properties were assessed by means of Hammett indicators and CO2-TPD. Rehydrated materials with the highest Mg/Al ratios showed some distinctive features: low surface area, well defined flake-like crystals, high basicity and strong basic sites with H_ values above 11. They were also the most active catalysts allowing to achieve 51–75% sunflower oil methanolysis conversion after 8 h of reaction under mild conditions (60 °C, 1 atm), methanol/oil molar ratio of 12 using between 2 and 6 wt% of catalyst. The conversion increased up to 96% (92% fatty acid methyl esters yield) using 2 wt% catalyst and methanol/oil molar ratio of 48. Catalyst leaching was not a serious problem with these solids that could be reutilized maintaining very good activities. A general accordance between solids basic properties and their catalytic performance has been observed. These results are among the best reported in the literature for heterogeneous methanolysis catalysts and have been attributed to the high basicity of the rehydrated solids and the presence of strong and accessible basic sites probably consisting in interlayer hydroxide anions at the edges of the crystals.
  • PublicationOpen Access
    Acid-catalyzed etherification of glycerol with tert-butanol: reaction monitoring through a complete identification of the produced alkyl ethers
    (MDPI, 2023) Cornejo Ibergallartu, Alfonso; Reyero Zaragoza, Inés; Campo Aranguren, Idoia; Arzamendi Manterola, María Cruz; Gandía Pascual, Luis; Ciencias; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2
    Higher tert-Butyl glycerol ethers (tBGEs) are interesting glycerol derivatives that can be produced from tert-butyl alcohol (TBA) and glycerol using an acid catalyst. Glycerol tert-butylation is a complex reaction that leads to the formation of five tBGEs (two monoethers, two diethers, and one triether). In order to gain insight into the reaction progress, the present work reports on the monitoring of glycerol etherification with TBA and p-toluensulfonic acid (PTSA) as homogeneous catalysts. Two analytical techniques were used: gas chromatography (GC), which constitutes the benchmark method, and( 1)H nuclear magnetic resonance (H-1 NMR), whose use for this purpose has not been reported to date. A method for the quantitative analysis of tBGEs and glycerol based on H-1 NMR is presented that greatly reduced the analysis time and relative error compared with GC-based methods. The combined use of both techniques allowed for a complete quantitative and qualitative description of the glycerol tert-butylation progress. The set of experimental results collected showed the influence of the catalyst concentration and TBA/glycerol ratio on the etherification reaction and evidenced the intrinsic difficulties of this process to achieve high selectivities and yields to the triether.