Bustince Sola, Humberto
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Bustince Sola
First Name
Humberto
person.page.departamento
Estadística, Informática y Matemáticas
person.page.instituteName
ISC. Institute of Smart Cities
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
3 results
Search Results
Now showing 1 - 3 of 3
Publication Open Access Some construction methods for pseudo-overlaps and pseudo-groupings and their application in group decision making(MDPI, 2023) García-Zamora, Diego; Paiva, Rui; Cruz, Anderson; Fernández Fernández, Francisco Javier; Bustince Sola, Humberto; Estadística, Informática y Matemáticas; Estatistika, Informatika eta MatematikaIn many real-world scenarios, the importance of different factors may vary, making commutativity an unreasonable assumption for aggregation functions, such as overlaps or groupings. To address this issue, researchers have introduced pseudo-overlaps and pseudo-groupings as their corresponding non-commutative generalizations. In this paper, we explore various construction methods for obtaining pseudo-overlaps and pseudo-groupings using overlaps, groupings, fuzzy negations, convex sums, and Riemannian integration. We then show the applicability of these construction methods in a multi-criteria group decision-making problem, where the importance of both the considered criteria and the experts vary. Our results highlight the usefulness of pseudo-overlaps and pseudo-groupings as a non-commutative alternative to overlaps and groupings.Publication Embargo Fuzzy dissimilarities and the fuzzy choquet integral of triangular fuzzy numbers on [0,1](Elsevier, 2025-04-01) Roldán López de Hierro, Antonio Francisco; Cruz, Anderson; Santiago, Regivan; Roldán, Concepción; García-Zamora, Diego; Neres, Fernando; Bustince Sola, Humberto; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISCHaving in mind the huge amount of data daily registered in the world, it is becoming increasingly important to summarize the information included in a data set. In Statistics and Computer Science, this task is successfully carried out by aggregation functions. One of the most widely applied methodologies of aggregating data is the Choquet integral. The main aim of this paper is to introduce an appropriate notion of Choquet integral in the context of fuzzy numbers. To do this, we face three challenges: the underlying uncertainty when handling fuzzy numbers, the way to order fuzzy numbers by appropriate binary relations and the way to compute the dissimilarity among fuzzy numbers. Illustrative examples are given by involving the α-order on the family of all triangular fuzzy numbers with support on [0,1].Publication Open Access Admissible OWA operators for fuzzy numbers(Elsevier, 2024) García-Zamora, Diego; Cruz, Anderson; Neres, Fernando; Santiago, Regivan; Roldán López de Hierro, Antonio Francisco; Paiva, Rui; Pereira Dimuro, Graçaliz; Martínez López, Luis; Bedregal, Benjamin; Bustince Sola, Humberto; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISCOrdered Weighted Averaging (OWA) operators are some of the most widely used aggregation functions in classic literature, but their application to fuzzy numbers has been limited due to the complexity of defining a total order in fuzzy contexts. However, the recent notion of admissible order for fuzzy numbers provides an effective method to totally order them by refining a given partial order. Therefore, this paper is devoted to defining OWA operators for fuzzy numbers with respect to admissible orders and investigating their properties. Firstly, we define the OWA operators associated with such admissible orders and then we show their main properties. Afterward, an example is presented to illustrate the applicability of these AOWA operators in linguistic decision-making. In this regard, we also develop an admissible order for trapezoidal fuzzy numbers that can be efficiently applied in practice.