Bustince Sola, Humberto
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Bustince Sola
First Name
Humberto
person.page.departamento
Estadística, Informática y Matemáticas
person.page.instituteName
ISC. Institute of Smart Cities
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
16 results
Search Results
Now showing 1 - 10 of 16
Publication Open Access From restricted equivalence functions on Ln to similarity measures between fuzzy multisets(IEEE, 2023) Ferrero Jaurrieta, Mikel; Takáč, Zdenko; Rodríguez Martínez, Iosu; Marco Detchart, Cedric; Bernardini, Ángela; Fernández Fernández, Francisco Javier; López Molina, Carlos; Bustince Sola, Humberto; Estadística, Informática y Matemáticas; Estatistika, Informatika eta MatematikaRestricted equivalence functions are well-known functions to compare two numbers in the interval between 0 and 1. Despite the numerous works studying the properties of restricted equivalence functions and their multiple applications as support for different similarity measures, an extension of these functions to an n-dimensional space is absent from the literature. In this paper, we present a novel contribution to the restricted equivalence function theory, allowing to compare multivalued elements. Specifically, we extend the notion of restricted equivalence functions from L to L n and present a new similarity construction on L n . Our proposal is tested in the context of color image anisotropic diffusion as an example of one of its many applications.Publication Open Access Generalizando el pooling maximo por funciones (a, b)-grouping en redes neuronales convolucionales(CAEPIA, 2024) Rodríguez Martínez, Iosu; Da Cruz Asmus, Tiago; Pereira Dimuro, Graçaliz; Herrera, Francisco; Takáč, Zdenko; Bustince Sola, Humberto; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC; Gobierno de Navarra / Nafarroako GobernuaEste artículo es un resumen del trabajo publicado en la revista Information Fusion [1]. En este artículo explorábamos el reemplazo del operador de pooling máximo comunmente empleado en redes neuronales convolucionales (CNNs) por funciones (a, b)-grouping. Estas funciones extienden el concepto de función de grouping clásica [2] a un intervalo cerrado [a, b], siguiendo la filosofía de [3]. En el contexto del operador de pooling, estas nuevas funciones ayudan a la optimización de los modelos suavizando los gradientes en el proceso de retropropagación y obteniendo resultados competitivos con métodos más complejosPublication Open Access Reemplazo de la función de pooling de redes neuronales convolucionales por combinaciones lineales de funciones crecientes(Universidad de Málaga, 2021) Rodríguez Martínez, Iosu; Lafuente López, Julio; Sesma Sara, Mikel; Herrera, Francisco; Ursúa Medrano, Pablo; Bustince Sola, Humberto; Estadística, Informática y Matemáticas; Estatistika, Informatika eta MatematikaLas redes convolucionales llevan a cabo un proceso automatico de extracción y fusión de características mediante el cual obtienen la información más relevante de una imagen dada. El proceso de submuestreo mediante el cual se fusionan características localmente próximas, conocido como ‘pooling’, se lleva a cabo tradicionalmente con funciones sencillas como el máximo o la media aritmética, ignorando otras opciones muy populares en el campo de la teoría de agregaciones. En este trabajo proponemos reemplazar dichas funciones por otra serie de ordenes estadísticos, así como por la integral de Sugeno y una nueva generalización de la misma. Además, basándonos en trabajos que emplean la combinación convexa del máximo y la media, presentamos una nueva capa que permite combinar varias de las nuevas agregaciones, mejorando sus resultados individuales.Publication Open Access Generalizing max pooling via (a, b)-grouping functions for convolutional neural networks(Elsevier, 2023) Rodríguez Martínez, Iosu; Da Cruz Asmus, Tiago; Pereira Dimuro, Graçaliz; Herrera, Francisco; Takáč, Zdenko; Bustince Sola, Humberto; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaDue to their high adaptability to varied settings and effective optimization algorithm, Convolutional Neural Networks (CNNs) have set the state-of-the-art on image processing jobs for the previous decade. CNNs work in a sequential fashion, alternating between extracting significant features from an input image and aggregating these features locally through ‘‘pooling" functions, in order to produce a more compact representation. Functions like the arithmetic mean or, more typically, the maximum are commonly used to perform this downsampling operation. Despite the fact that many studies have been devoted to the development of alternative pooling algorithms, in practice, ‘‘max-pooling" still equals or exceeds most of these possibilities, and has become the standard for CNN construction. In this paper we focus on the properties that make the maximum such an efficient solution in the context of CNN feature downsampling and propose its replacement by grouping functions, a family of functions that share those desirable properties. In order to adapt these functions to the context of CNNs, we present (𝑎, 𝑏)- grouping functions, an extension of grouping functions to work with real valued data. We present different construction methods for (𝑎, 𝑏)-grouping functions, and demonstrate their empirical applicability for replacing max-pooling by using them to replace the pooling function of many well-known CNN architectures, finding promising results.Publication Open Access Cuantificar los hechos represivos: explicación y retos de la base de datos del fondo documental de la memoria histórica en Navarra(2019) Majuelo Gil, Emilio; Mendiola Gonzalo, Fernando; Garmendia Amutxastegi, Gotzon; Piérola Narvarte, Gemma; García Funes, Juan Carlos; Yániz Berrio, Edurne; Pérez Ibarrola, Nerea; Barrenechea Tartas, Edurne; Rodríguez Martínez, Iosu; Sesma Redín, Rubén; Bustince Sola, Humberto; Ciencias Humanas y de la Educación; Giza eta Hezkuntza Zientziak; Estadística, Informática y Matemáticas; Estatistika, Informatika eta MatematikaEn este documento se presentan los fundamentos historiográficos y metodológicos de la base de datos del Fondo Documental de la Memoria Histórica en Navarra, desarrollada en la Universidad Pública de Navarra como consecuencia del encargo institucional realizado por el Parlamento y el Gobierno de Navarra. Con este fin, se ha procedido a elaborar una base de datos que permita una ágil consulta por parte de diferentes agentes sociales, institucionales y académicos en torno a la represión franquista, intentando incluir en ella la gran variedad de prácticas represivas que la historiografía ha ido identificando. Primeramente, se presenta un balance sobre la publicación, en los últimos años, de diferentes bases de datos on-line en torno a las víctimas de la guerra civil y la represión franquista en varias comunidades autónomas. A continuación, se presenta la unidad de análisis de nuestra base de datos, “los hechos represivos”, insertándola en el contexto historiográfico en torno a la represión franquista y los estudios sobre la violencia. En un tercer apartado pasamos a describir las diferentes categorías y subcategorías represivas en las que se enmarcan los hechos represivos, y finalmente se presentan algunas características técnicas de la organización interna de la información y el sofware de la base de datos.Publication Open Access Extensión multidimensional de la integral de Choquet discreta y su aplicación en redes neuronales recurrentes(Universidad de Málaga, 2021) Ferrero Jaurrieta, Mikel; Rodríguez Martínez, Iosu; Pereira Dimuro, Graçaliz; Fernández Fernández, Francisco Javier; Bustince Sola, Humberto; Estadística, Informática y Matemáticas; Estatistika, Informatika eta MatematikaEn este trabajo presentamos una definición de la integral de Choquet discreta n-dimensional, para fusionar datos vectoriales. Como aplicación, utilizamos estas nuevas integrales de Choquet discretas multidimensionales en la fusión de información secuencial en las redes neuronales recurrentes, mejorando los resultados obtenidos mediante el método de agregación tradicional.Publication Embargo Extremal values-based aggregation functions(Elsevier, 2024-10-01) Halaš, Radomír; Mesiar, Radko; Kolesárová, Anna; Saadati, Reza; Herrera, Francisco; Rodríguez Martínez, Iosu; Bustince Sola, Humberto; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISCWe introduce and study aggregation functions based on extremal values, namely extended (𝑙, 𝑢)- aggregation functions whose outputs only depend on a fixed number 𝑙 of extremal lower input values and a fixed number 𝑢 of extremal upper input values, independently of the arity of the input 𝑛-tuples (𝑛 ≥ 𝑙 + 𝑢). We discuss several general properties of (𝑙, 𝑢)-aggregation functions and we study special (𝑙, 𝑢)-aggregation functions with neutral element, including t-conorms, t-norms and uninorms. We also study (𝑙, 𝑢)-aggregation functions defined by means of integrals with respect to discrete fuzzy measures, as well as (𝑙, 𝑢)-ordered weighted quasi-arithmetic means based on appropriate weighting vectors. We also stress some generalizations based on recently introduced new types of monotonicity. Some possible applications are sketched, too.Publication Open Access De funciones de equivalencia restringida en Lⁿ a medidas de similitud entre multiconjuntos difusos(CAEPIA, 2024) Ferrero Jaurrieta, Mikel; Rodríguez Martínez, Iosu; Bernardini, Ángela; Fernández Fernández, Francisco Javier; López Molina, Carlos; Bustince Sola, Humberto; Takáč, Zdenko; Marco Detchart, Cedric; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISCEste artículo es un resumen del trabajo publicado en la revista IEEE Transactions on Fuzzy Systems. En este trabajo, presentamos una contribución a la teoría de las Funciones de Equivalencia Restringida (REF), que permite comparar elementos multivaluados. Extendemos el concepto de REF de L a Ln y presentamos una nueva construcción de similitud en Ln. A partir de esta filosofía se construyen medidas de similitud entre multiconjuntos difusos y se presenta un ejemplo aplicado en el contexto de la difusión anisotrópica de imágenes en color.Publication Open Access Gertakari errepresiboak kuantifikatzea: Nafarroako Memoria Historikoaren Dokumentu Funtsaren azalpena eta erronkak(2019) Majuelo Gil, Emilio; Mendiola Gonzalo, Fernando; Garmendia Amutxastegi, Gotzon; Piérola Narvarte, Gemma; García Funes, Juan Carlos; Yániz Berrio, Edurne; Pérez Ibarrola, Nerea; Barrenechea Tartas, Edurne; Rodríguez Martínez, Iosu; Sesma Redín, Rubén; Bustince Sola, Humberto; Ciencias Humanas y de la Educación; Giza eta Hezkuntza Zientziak; Estadística, Informática y Matemáticas; Estatistika, Informatika eta MatematikaEn este documento se presentan los fundamentos historiográficos y metodológicos de la base de datos del Fondo Documental de la Memoria Histórica en Navarra, desarrollada en la Universidad Pública de Navarra como consecuencia del encargo institucional realizado por el Parlamento y el Gobierno de Navarra. Con este fin, se ha procedido a elaboraruna base de datos que permita una ágil consulta por parte de diferentes agentes sociales, institucionales y académicos en torno a la represión franquista, intentando incluir en ella la gran variedad de prácticas represivas que la historiografía ha ido identificando. Primeramente, se presenta un balance sobre la publicación, en los últimos años, de diferentes bases de datos on-line en torno a las víctimas de la guerra civil y la represión franquista en varias comunidades autónomas. A continuación, se presenta la unidad de análisis de nuestra base de datos, “los hechos represivos”, insertándola en el contexto historiográfico en torno a la represión franquista y los estudios sobre la violencia. En un tercer apartado pasamos a describir las diferentes categorías y subcategorías represivas en las que se enmarcan los hechos represivos, y finalmente se presentan algunas características técnicas de la organización interna de la información y el software de la base de datos.Publication Open Access Replacing pooling functions in convolutional neural networks by linear combinations of increasing functions(Elsevier, 2022) Rodríguez Martínez, Iosu; Lafuente López, Julio; Santiago, Regivan; Pereira Dimuro, Graçaliz; Herrera, Francisco; Bustince Sola, Humberto; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Gobierno de Navarra / Nafarroako GobernuaTraditionally, Convolutional Neural Networks make use of the maximum or arithmetic mean in order to reduce the features extracted by convolutional layers in a downsampling process known as pooling. However, there is no strong argument to settle upon one of the two functions and, in practice, this selection turns to be problem dependent. Further, both of these options ignore possible dependencies among the data. We believe that a combination of both of these functions, as well as of additional ones which may retain different information, can benefit the feature extraction process. In this work, we replace traditional pooling by several alternative functions. In particular, we consider linear combinations of order statistics and generalizations of the Sugeno integral, extending the latter¿s domain to the whole real line and setting the theoretical base for their application. We present an alternative pooling layer based on this strategy which we name ¿CombPool¿ layer. We replace the pooling layers of three different architectures of increasing complexity by CombPool layers, and empirically prove over multiple datasets that linear combinations outperform traditional pooling functions in most cases. Further, combinations with either the Sugeno integral or one of its generalizations usually yield the best results, proving a strong candidate to apply in most architectures.