Bustince Sola, Humberto
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Bustince Sola
First Name
Humberto
person.page.departamento
Estadística, Informática y Matemáticas
person.page.instituteName
ISC. Institute of Smart Cities
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
4 results
Search Results
Now showing 1 - 4 of 4
Publication Open Access Directions of directional, ordered directional and strengthened ordered directional increasingness of linear and ordered linear fusion operators(IEEE, 2019) Sesma Sara, Mikel; Marco Detchart, Cedric; Lafuente López, Julio; Roldán López de Hierro, Antonio Francisco; Mesiar, Radko; Bustince Sola, Humberto; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC; Estadística, Informática y Matemáticas; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaIn this work we discuss the forms of monotonicity that have been recently introduced to relax the monotonicity condition in the definition of aggregation functions. We focus on directional, ordered directional and strengthened ordered directional monotonicity, study their main properties and provide some results about their links and relations among them. We also present two families of functions, the so-called linear fusion functions and ordered linear fusion functions and we study the set of directions for which these types of functions are directionally, ordered directionally and strengthened ordered directionally increasing. In particular, OWA operators are an example of ordered linear fusion functions.Publication Open Access Curve-based monotonicity: a generalization of directional monotonicity(Taylor & Francis, 2019) Roldán López de Hierro, Antonio Francisco; Sesma Sara, Mikel; Špirková, Jana; Lafuente López, Julio; Pradera, Ana; Mesiar, Radko; Bustince Sola, Humberto; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC; Estadística, Informática y MatemáticasIn this work we propose a generalization of the notion of directional monotonicity. Instead of considering increasingness or decreasingness along rays, we allow more general paths defined by curves in the n-dimensional space. These considerations lead us to the notion of α-monotonicity, where α is the corresponding curve. We study several theoretical properties of α-monotonicity and relate it to other notions of monotonicity, such as weak monotonicity and directional monotonicity.Publication Open Access Description and properties of curve-based monotone functions(Springer, 2019) Sesma Sara, Mikel; Miguel Turullols, Laura de; Roldán López de Hierro, Antonio Francisco; Špirková, Jana; Mesiar, Radko; Bustince Sola, Humberto; Institute of Smart Cities - ISCCurve-based monotonicity is one of the lately introduced relaxations of monotonicity. As directional monotonicity regards monotonicity along fixed rays, which are given by real vectors, curve-based monotonicity studies the increase of functions with respect to a general curve. In this work we study some theoretical properties of this type of monotonicity and we relate this concept with previous relaxations of monotonicity.Publication Open Access Strengthened ordered directionally monotone functions. Links between the different notions of monotonicity(Elsevier, 2019) Sesma Sara, Mikel; Lafuente López, Julio; Roldán López de Hierro, Antonio Francisco; Mesiar, Radko; Bustince Sola, Humberto; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC; Estadística, Informática y MatemáticasIn this work, we propose a new notion of monotonicity: strengthened ordered directional monotonicity. This generalization of monotonicity is based on directional monotonicity and ordered directional monotonicity, two recent weaker forms of monotonicity. We discuss the relation between those different notions of monotonicity from a theoretical point of view. Additionally, along with the introduction of two families of functions and a study of their connection to the considered monotonicity notions, we define an operation between functions that generalizes the Choquet integral and the Lukasiewicz implication.