Bustince Sola, Humberto

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Bustince Sola

First Name

Humberto

person.page.departamento

Estadística, Informática y Matemáticas

person.page.instituteName

ISC. Institute of Smart Cities

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 2 of 2
  • PublicationOpen Access
    Discrete IV dG-Choquet integrals with respect to admissible orders
    (Elsevier, 2021) Takáč, Zdenko; Uriz Martín, Mikel Xabier; Galar Idoate, Mikel; Paternain Dallo, Daniel; Bustince Sola, Humberto; Estatistika, Informatika eta Matematika; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Estadística, Informática y Matemáticas; Ingeniería Eléctrica, Electrónica y de Comunicación; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    In this work, we introduce the notion of dG-Choquet integral, which generalizes the discrete Choquet integral replacing, in the first place, the difference between inputs represented by closed subintervals of the unit interval [0,1] by a dissimilarity function; and we also replace the sum by more general appropriate functions. We show that particular cases of dG-Choquet integral are both the discrete Choquet integral and the d-Choquet integral. We define interval-valued fuzzy measures and we show how they can be used with dG-Choquet integrals to define an interval-valued discrete Choquet integral which is monotone with respect to admissible orders. We finally study the validity of this interval-valued Choquet integral by means of an illustrative example in a classification problem. © 2021
  • PublicationOpen Access
    d-Choquet integrals: Choquet integrals based on dissimilarities
    (Elsevier, 2020) Bustince Sola, Humberto; Mesiar, Radko; Fernández Fernández, Francisco Javier; Galar Idoate, Mikel; Paternain Dallo, Daniel; Altalhi, A. H.; Pereira Dimuro, Graçaliz; Bedregal, Benjamin; Takáč, Zdenko; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC; Estadística, Informática y Matemáticas; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa, PJUPNA13
    The paper introduces a new class of functions from [0,1]n to [0,n] called d-Choquet integrals. These functions are a generalization of the 'standard' Choquet integral obtained by replacing the difference in the definition of the usual Choquet integral by a dissimilarity function. In particular, the class of all d-Choquet integrals encompasses the class of all 'standard' Choquet integrals but the use of dissimilarities provides higher flexibility and generality. We show that some d-Choquet integrals are aggregation/pre-aggregation/averaging/functions and some of them are not. The conditions under which this happens are stated and other properties of the d-Choquet integrals are studied.