Bustince Sola, Humberto
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Bustince Sola
First Name
Humberto
person.page.departamento
Estadística, Informática y Matemáticas
person.page.instituteName
ISC. Institute of Smart Cities
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
205 results
Search Results
Now showing 1 - 10 of 205
Publication Open Access The null space of fuzzy inclusion measures(IEEE, 2019) Couso, Inés; Bustince Sola, Humberto; Fernández Fernández, Francisco Javier; Sánchez, Luciano; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC; Estadística, Informática y MatemáticasSome formal relationships between the different axiomatic definitions of inclusion measure are analysed. In particular, the links between the different proposals about the null-space (the collection of pairs associated with a null degree of inclusion) are studied. Taking as starting point the well-known axiomatics of Kitainik and Sinha-Dougherty, we observe that other alternative proposals about the null-space are incompatible with both the null-space and the decomposition axioms of these authors. We also conclude that both the axiomatics of Kitainik and that of Sinha-Dougherty contain certain redundancies. Reduced equivalent lists of axioms are proposed.Publication Open Access A fusion method for multi-valued data(Elsevier, 2021) Papčo, Martin; Rodríguez Martínez, Iosu; Fumanal Idocin, Javier; Altalhi, A. H.; Bustince Sola, Humberto; Estadística, Informática y Matemáticas; Estatistika, Informatika eta MatematikaIn this paper we propose an extension of the notion of deviation-based aggregation function tailored to aggregate multidimensional data. Our objective is both to improve the results obtained by other methods that try to select the best aggregation function for a particular set of data, such as penalty functions, and to reduce the temporal complexity required by such approaches. We discuss how this notion can be defined and present three illustrative examples of the applicability of our new proposal in areas where temporal constraints can be strict, such as image processing, deep learning and decision making, obtaining favourable results in the process.Publication Open Access N-dimensional admissibly ordered interval-valued overlap functions and its influence in interval-valued fuzzy rule-based classification systems(IEEE, 2021) Da Cruz Asmus, Tiago; Sanz Delgado, José Antonio; Pereira Dimuro, Graçaliz; Bedregal, Benjamin; Fernández Fernández, Francisco Javier; Bustince Sola, Humberto; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC; Estadística, Informática y MatemáticasOverlap functions are a type of aggregation functions that are not required to be associative, generally used to indicate the overlapping degree between two values. They have been successfully used as a conjunction operator in several practical problems, such as fuzzy rulebased classification systems (FRBCSs) and image processing. Some extensions of overlap functions were recently proposed, such as general overlap functions and, in the interval-valued context, n-dimensional interval-valued overlap functions. The latter allow them to be applied in n-dimensional problems with interval-valued inputs, like interval-valued classification problems, where one can apply interval-valued FRBCSs (IV-FRBCSs). In this case, the choice of an appropriate total order for intervals, like an admissible order, can play an important role. However, neither the relationship between the interval order and the n-dimensional interval-valued overlap function (which may or may not be increasing for that order) nor the impact of this relationship in the classification process have been studied in the literature. Moreover, there is not a clear preferred n-dimensional interval-valued overlap function to be applied in an IV-FRBCS. Hence, in this paper we: (i) present some new results on admissible orders, which allow us to introduce the concept of n-dimensional admissibly ordered interval-valued overlap functions, that is, n-dimensional interval-valued overlap functions that are increasing with respect to an admissible order; (ii) develop a width-preserving construction method for this kind of function, derived from an admissible order and an n-dimensional overlap function, discussing some of its features; (iii) analyze the behaviour of several combinations of admissible orders and n-dimensional (admissibly ordered) interval-valued overlap functions when applied in IV-FRBCSs. All in all, the contribution of this paper resides in pointing out the effect of admissible orders and n-dimensional admissibly ordered interval-valued overlap functions, both from a theoretical and applied points of view, the latter when considering classification problems.Publication Open Access Quantifying repressive acts: explanation and challenges of the documentary archive of historical memory in Navarre(2019) Majuelo Gil, Emilio; Mendiola Gonzalo, Fernando; Garmendia Amutxastegi, Gotzon; Piérola Narvarte, Gemma; García Funes, Juan Carlos; Yániz Berrio, Edurne; Pérez Ibarrola, Nerea; Barrenechea Tartas, Edurne; Rodríguez Martínez, Iosu; Sesma Redín, Rubén; Bustince Sola, Humberto; Ciencias Humanas y de la Educación; Giza eta Hezkuntza Zientziak; Estadística, Informática y Matemáticas; Estatistika, Informatika eta MatematikaThis document presents the historiographical and methodological foundations of the database of the Documentary Archive of Historical Memory in Navarre, which was developed in the Public University of Navarre following a commission from the Parliament and Government of Navarre. For this purpose a database was elaborated on the Francoist repression with the aim of including the great variety of repressive practices that historiography has identified. This database can be swiftly and easily consulted by the different social, institutional and academic agents. In the first place, the present document provides an assessment of the publication in several autonomous communities in recent years of different online databases on the victims of the civil war and the Francoist repression. Next, it introduces the unit of analysis of our database, “repressive acts”, which it inserts in the historiographical context of the Francoist repression and studies on violence. In the third section, a description is given of the different repressive categories and subcategories in which the repressive acts are framed. Finally, it presents some technical characteristics of the database’s internal organization and software.Publication Open Access Uso de t-normas para el estudio de la convexidad en conjuntos difusos intervalo-valuados(Universidad de Málaga, 2021) Huidobro, Pedro; Alonso, Pedro; Bustince Sola, Humberto; Janis, Vladimír; Montes Rodríguez, Susana; Estadística, Informática y Matemáticas; Estatistika, Informatika eta MatematikaEn muchos problemas reales no se pueden tomar medidas de forma exacta. Así, los conjuntos difusos surgieron como una forma de intentar tratar con la incertidumbre de la forma más eficiente posible. Por otro lado, debe señalarse que la ‘convexidad es un concepto interesante en varias áreas dentro de las matemáticas. Teniendo esto en cuenta, en este documento proponemos una extensión del concepto de convexidad para conjuntos difusos intervalo-valuados basada en el uso de t-normas para intervalos. Para ello, y teniendo en consideración la literatura científica existente respecto de t-normas, presentamos una definición de t-norma aplicada a intervalos. Por último, comprobamos que nuestra definición de convexidad, utilizando t-normas, preserva la convexidad a través de intersecciones, es decir, que la intersección de dos conjuntos difusos intervalo-valuados convexos es también convexa.Publication Open Access Cuantificar los hechos represivos: explicación y retos de la base de datos del fondo documental de la memoria histórica en Navarra(2019) Majuelo Gil, Emilio; Mendiola Gonzalo, Fernando; Garmendia Amutxastegi, Gotzon; Piérola Narvarte, Gemma; García Funes, Juan Carlos; Yániz Berrio, Edurne; Pérez Ibarrola, Nerea; Barrenechea Tartas, Edurne; Rodríguez Martínez, Iosu; Sesma Redín, Rubén; Bustince Sola, Humberto; Ciencias Humanas y de la Educación; Giza eta Hezkuntza Zientziak; Estadística, Informática y Matemáticas; Estatistika, Informatika eta MatematikaEn este documento se presentan los fundamentos historiográficos y metodológicos de la base de datos del Fondo Documental de la Memoria Histórica en Navarra, desarrollada en la Universidad Pública de Navarra como consecuencia del encargo institucional realizado por el Parlamento y el Gobierno de Navarra. Con este fin, se ha procedido a elaborar una base de datos que permita una ágil consulta por parte de diferentes agentes sociales, institucionales y académicos en torno a la represión franquista, intentando incluir en ella la gran variedad de prácticas represivas que la historiografía ha ido identificando. Primeramente, se presenta un balance sobre la publicación, en los últimos años, de diferentes bases de datos on-line en torno a las víctimas de la guerra civil y la represión franquista en varias comunidades autónomas. A continuación, se presenta la unidad de análisis de nuestra base de datos, “los hechos represivos”, insertándola en el contexto historiográfico en torno a la represión franquista y los estudios sobre la violencia. En un tercer apartado pasamos a describir las diferentes categorías y subcategorías represivas en las que se enmarcan los hechos represivos, y finalmente se presentan algunas características técnicas de la organización interna de la información y el sofware de la base de datos.Publication Open Access Hyperspectral imaging using notions from type-2 fuzzy sets(Springer, 2019) López Maestresalas, Ainara; Miguel Turullols, Laura de; López Molina, Carlos; Arazuri Garín, Silvia; Bustince Sola, Humberto; Jarén Ceballos, Carmen; Ingeniería; Ingeniaritza; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaFuzzy set theory has developed a prolific armamentarium of mathematical tools for each of the topics that has fallen within its scope. One of such topics is data comparison, for which a range of operators has been presented in the past. These operators can be used within the fuzzy set theory, but can also be ported to other scenarios in which data are provided in various representations. In this work, we elaborate on notions for type-2 fuzzy sets, specifically for the comparison of type-2 fuzzy membership degrees, to create function comparison operators. We further apply these operators to hyperspectral imaging, in which pixelwise data are provided as functions over a certain energy spectra. The performance of the functional comparison operators is put to the test in the context of in-laboratory hyperspectral image segmentation.Publication Embargo Non-symmetric over-time pooling using pseudo-grouping functions for convolutional neural networks(Elsevier, 2024-07-01) Ferrero Jaurrieta, Mikel; Paiva, Rui; Cruz, Anderson; Bedregal, Benjamin; Miguel Turullols, Laura de; Takáč, Zdenko; López Molina, Carlos; Bustince Sola, Humberto; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISCConvolutional Neural Networks (CNNs) are a family of networks that have become state-of-the-art in several fields of artificial intelligence due to their ability to extract spatial features. In the context of natural language processing, they can be used to build text classification models based on textual features between words. These networks fuse local features to generate global features in their over-time pooling layers. These layers have been traditionally built using the maximum function or other symmetric functions such as the arithmetic mean. It is important to note that the order of input local features is significant (i.e. the symmetry is not an inherent characteristic of the model). While this characteristic is appropriate for image-oriented CNNs, where symmetry might make the network robust to image rigid transformations, it seems counter-productive for text processing, where the order of the words is certainly important. Our proposal is, hence, to use non-symmetric pooling operators to replace the maximum or average functions. Specifically, we propose to perform over-time pooling using pseudo-grouping functions, a family of non-symmetric aggregation operators that generalize the maximum function. We present a construction method for pseudo-grouping functions and apply different examples of this family to over-time pooling layers in text-oriented CNNs. Our proposal is tested on seven different models and six different datasets in the context of engineering applications, e.g. text classification. The results show an overall improvement of the models when using non-symmetric pseudo-grouping functions over the traditional pooling function.Publication Open Access A supervised fuzzy measure learning algorithm for combining classifiers(Elsevier, 2023) Uriz Martín, Mikel Xabier; Paternain Dallo, Daniel; Bustince Sola, Humberto; Galar Idoate, Mikel; Institute of Smart Cities - ISC; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaFuzzy measure-based aggregations allow taking interactions among coalitions of the input sources into account. Their main drawback when applying them in real-world problems, such as combining classifier ensembles, is how to define the fuzzy measure that governs the aggregation and specifies the interactions. However, their usage for combining classifiers has shown its advantage. The learning of the fuzzy measure can be done either in a supervised or unsupervised manner. This paper focuses on supervised approaches. Existing supervised approaches are designed to minimize the mean squared error cost function, even for classification problems. We propose a new fuzzy measure learning algorithm for combining classifiers that can optimize any cost function. To do so, advancements from deep learning frameworks are considered such as automatic gradient computation. Therefore, a gradient-based method is presented together with three new update policies that are required to preserve the monotonicity constraints of the fuzzy measures. The usefulness of the proposal and the optimization of cross-entropy cost are shown in an extensive experimental study with 58 datasets corresponding to both binary and multi-class classification problems. In this framework, the proposed method is compared with other state-of-the-art methods for fuzzy measure learning.Publication Open Access Fuzzy clustering to encode contextual information in artistic image classification(Springer, 2022) Fumanal Idocin, Javier; Takáč, Zdenko; Horanská, Lubomíra; Bustince Sola, Humberto; Cordón, Óscar; Estadística, Informática y Matemáticas; Estatistika, Informatika eta MatematikaAutomatic art analysis comprises of utilizing diverse processing methods to classify and categorize works of art. When working with this kind of pictures, we have to take under consideration different considerations compared to classical picture handling, since works of art alter definitely depending on the creator, the scene delineated or their aesthetic fashion. This extra data improves the visual signals gotten from the images and can lead to better performance. However, this information needs to be modeled and embed alongside the visual features of the image. This is often performed utilizing deep learning models, but they are expensive to train. In this paper we utilize the Fuzzy C-Means algorithm to create a embedding strategy based on fuzzy memberships to extract relevant information from the clusters present in the contextual information. We extend an existing state-of-the-art art classification system utilizing this strategy to get a new version that presents similar results without training additional deep learning models.