Bustince Sola, Humberto
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Bustince Sola
First Name
Humberto
person.page.departamento
Estadística, Informática y Matemáticas
person.page.instituteName
ISC. Institute of Smart Cities
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
58 results
Search Results
Now showing 1 - 10 of 58
Publication Embargo Fuzzy dissimilarities and the fuzzy choquet integral of triangular fuzzy numbers on [0,1](Elsevier, 2025-04-01) Roldán López de Hierro, Antonio Francisco; Cruz, Anderson; Santiago, Regivan; Roldán, Concepción; García-Zamora, Diego; Neres, Fernando; Bustince Sola, Humberto; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISCHaving in mind the huge amount of data daily registered in the world, it is becoming increasingly important to summarize the information included in a data set. In Statistics and Computer Science, this task is successfully carried out by aggregation functions. One of the most widely applied methodologies of aggregating data is the Choquet integral. The main aim of this paper is to introduce an appropriate notion of Choquet integral in the context of fuzzy numbers. To do this, we face three challenges: the underlying uncertainty when handling fuzzy numbers, the way to order fuzzy numbers by appropriate binary relations and the way to compute the dissimilarity among fuzzy numbers. Illustrative examples are given by involving the α-order on the family of all triangular fuzzy numbers with support on [0,1].Publication Open Access On the notion of fuzzy dispersion measure and its application to triangular fuzzy numbers(Elsevier, 2023) Roldán López de Hierro, Antonio Francisco; Bustince Sola, Humberto; Rueda, María del Mar; Roldán, Concepción; Miguel Turullols, Laura de; Guerra Errea, Carlos; Estadística, Informática y Matemáticas; Estatistika, Informatika eta MatematikaIn this paper, based on the analysis of the most widely used dispersion measure in the real context (namely, the variance), we introduce the notion of fuzzy dispersion measure associated to a finite set of data given by fuzzy numbers. This measure is implemented as a fuzzy number, so there is no loss of information caused by any defuzzification. The proposed concept satisfies the usual properties in a genuinely fuzzy sense and it avoids limitations in terms of its geometric shape or its analytical properties: under this conception, it could have a piece of its support in the negative part of the real line. This novel notion can be interpreted as a way of fusing the information included in a fuzzy data set in order to make a decision based on its dispersion. To illustrate the main characteristics of this approach, we present an example of a fuzzy dispersion measure that allows to conclude that this new way to deal this problem is coherent, at least, from the point of view of human intuition.Publication Embargo Non-symmetric over-time pooling using pseudo-grouping functions for convolutional neural networks(Elsevier, 2024-07-01) Ferrero Jaurrieta, Mikel; Paiva, Rui; Cruz, Anderson; Bedregal, Benjamin; Miguel Turullols, Laura de; Takáč, Zdenko; López Molina, Carlos; Bustince Sola, Humberto; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISCConvolutional Neural Networks (CNNs) are a family of networks that have become state-of-the-art in several fields of artificial intelligence due to their ability to extract spatial features. In the context of natural language processing, they can be used to build text classification models based on textual features between words. These networks fuse local features to generate global features in their over-time pooling layers. These layers have been traditionally built using the maximum function or other symmetric functions such as the arithmetic mean. It is important to note that the order of input local features is significant (i.e. the symmetry is not an inherent characteristic of the model). While this characteristic is appropriate for image-oriented CNNs, where symmetry might make the network robust to image rigid transformations, it seems counter-productive for text processing, where the order of the words is certainly important. Our proposal is, hence, to use non-symmetric pooling operators to replace the maximum or average functions. Specifically, we propose to perform over-time pooling using pseudo-grouping functions, a family of non-symmetric aggregation operators that generalize the maximum function. We present a construction method for pseudo-grouping functions and apply different examples of this family to over-time pooling layers in text-oriented CNNs. Our proposal is tested on seven different models and six different datasets in the context of engineering applications, e.g. text classification. The results show an overall improvement of the models when using non-symmetric pseudo-grouping functions over the traditional pooling function.Publication Open Access A supervised fuzzy measure learning algorithm for combining classifiers(Elsevier, 2023) Uriz Martín, Mikel Xabier; Paternain Dallo, Daniel; Bustince Sola, Humberto; Galar Idoate, Mikel; Institute of Smart Cities - ISC; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaFuzzy measure-based aggregations allow taking interactions among coalitions of the input sources into account. Their main drawback when applying them in real-world problems, such as combining classifier ensembles, is how to define the fuzzy measure that governs the aggregation and specifies the interactions. However, their usage for combining classifiers has shown its advantage. The learning of the fuzzy measure can be done either in a supervised or unsupervised manner. This paper focuses on supervised approaches. Existing supervised approaches are designed to minimize the mean squared error cost function, even for classification problems. We propose a new fuzzy measure learning algorithm for combining classifiers that can optimize any cost function. To do so, advancements from deep learning frameworks are considered such as automatic gradient computation. Therefore, a gradient-based method is presented together with three new update policies that are required to preserve the monotonicity constraints of the fuzzy measures. The usefulness of the proposal and the optimization of cross-entropy cost are shown in an extensive experimental study with 58 datasets corresponding to both binary and multi-class classification problems. In this framework, the proposed method is compared with other state-of-the-art methods for fuzzy measure learning.Publication Open Access Fuzzy clustering to encode contextual information in artistic image classification(Springer, 2022) Fumanal Idocin, Javier; Takáč, Zdenko; Horanská, Lubomíra; Bustince Sola, Humberto; Cordón, Óscar; Estadística, Informática y Matemáticas; Estatistika, Informatika eta MatematikaAutomatic art analysis comprises of utilizing diverse processing methods to classify and categorize works of art. When working with this kind of pictures, we have to take under consideration different considerations compared to classical picture handling, since works of art alter definitely depending on the creator, the scene delineated or their aesthetic fashion. This extra data improves the visual signals gotten from the images and can lead to better performance. However, this information needs to be modeled and embed alongside the visual features of the image. This is often performed utilizing deep learning models, but they are expensive to train. In this paper we utilize the Fuzzy C-Means algorithm to create a embedding strategy based on fuzzy memberships to extract relevant information from the clusters present in the contextual information. We extend an existing state-of-the-art art classification system utilizing this strategy to get a new version that presents similar results without training additional deep learning models.Publication Open Access Applying d-XChoquet integrals in classification problems(IEEE, 2022) Wieczynski, Jonata; Lucca, Giancarlo; Borges, Eduardo N.; Emmendorfer, Leonardo R.; Ferrero Jaurrieta, Mikel; Pereira Dimuro, Graçaliz; Bustince Sola, Humberto; Estadística, Informática y Matemáticas; Estatistika, Informatika eta MatematikaSeveral generalizations of the Choquet integral have been applied in the Fuzzy Reasoning Method (FRM) of Fuzzy Rule-Based Classification Systems (FRBCS's) to improve its performance. Additionally, to achieve that goal, researchers have searched for new ways to provide more flexibility to those generalizations, by restricting the requirements of the functions being used in their constructions and relaxing the monotonicity of the integral. This is the case of CT-integrals, CC-integrals, CF-integrals, CF1F2-integrals and dCF-integrals, which obtained good performance in classification algorithms, more specifically, in the fuzzy association rule-based classification method for high-dimensional problems (FARC-HD). Thereafter, with the introduction of Choquet integrals based on restricted dissimilarity functions (RDFs) in place of the standard difference, a new generalization was made possible: the d-XChoquet (d-XC) integrals, which are ordered directional increasing functions and, depending on the adopted RDF, may also be a pre-aggregation function. Those integrals were applied in multi-criteria decision making problems and also in a motor-imagery brain computer interface framework. In the present paper, we introduce a new FRM based on the d-XC integral family, analyzing its performance by applying it to 33 different datasets from the literature.Publication Open Access Measures of embedding for interval-valued fuzzy sets(Elsevier, 2023) Bouchet, Agustina; Sesma Sara, Mikel; Ochoa Lezaun, Gustavo; Bustince Sola, Humberto; Montes Rodríguez, Susana; Díaz, Irene; Estadística, Informática y Matemáticas; Estatistika, Informatika eta MatematikaInterval-valued fuzzy sets are a generalization of classical fuzzy sets where the membership values are intervals. The epistemic interpretation of interval-valued fuzzy sets assumes that there is one real-valued membership degree of an element within the membership interval of possible membership degrees. Considering this epistemic interpretation, we propose a new measure, called IV-embedding, to compare the precision of two interval-valued fuzzy sets. An axiomatic definition for this concept as well as a construction method are provided. The construction method is based on aggregation operators and the concept of interval embedding, which is also introduced and deeply studied.Publication Open Access F-homogeneous functions and a generalization of directional monotonicity(Wiley, 2022) Santiago, Regivan; Sesma Sara, Mikel; Fernández Fernández, Francisco Javier; Takáč, Zdenko; Mesiar, Radko; Bustince Sola, Humberto; Estadística, Informática y Matemáticas; Estatistika, Informatika eta MatematikaA function that takes (Formula presented.) numbers as input and outputs one number is said to be homogeneous whenever the result of multiplying each input by a certain factor (Formula presented.) yields the original output multiplied by that same factor. This concept has been extended by the notion of abstract homogeneity, which generalizes the product in the expression of homogeneity by a general function (Formula presented.) and the effect of the factor (Formula presented.) by an automorphism. However, the effect of parameter (Formula presented.) remains unchanged for all the input values. In this study, we generalize further the condition of abstract homogeneity by introducing (Formula presented.) -homogeneity, which is defined with respect to a family of functions, enabling a different behavior for each of the inputs. Next, we study the properties that are satisfied by this family of functions and, moreover, we link this concept with the condition of directional monotonicity, which is a trendy property in the framework of aggregation functions. To achieve that, we generalize directional monotonicity by (Formula presented.) directional monotonicity, which is defined with respect to a family of functions (Formula presented.) and a family of vectors (Formula presented.). Finally, we show how the introduced concepts could be applied in two different problems of computer vision: a snow detection problem and image thresholding improvement. © 2022 The Authors. International Journal of Intelligent Systems published by Wiley Periodicals LLC.Publication Open Access Systematic review of aggregation functions applied to image edge detection(MDPI, 2023) Amorim, Miqueias; Pereira Dimuro, Graçaliz; Borges, Eduardo N.; Dalmazo, Bruno L.; Marco Detchart, Cedric; Lucca, Giancarlo; Bustince Sola, Humberto; Estadística, Informática y Matemáticas; Estatistika, Informatika eta MatematikaEdge detection is a crucial process in numerous stages of computer vision. This field of study has recently gained momentum due to its importance in various applications. The uncertainty, among other characteristics of images, makes it difficult to accurately determine the edge of objects. Furthermore, even the definition of an edge is vague as an edge can be considered as the maximum boundary between two regions with different properties. Given the advancement of research in image discontinuity detection, especially using aggregation and pre-aggregation functions, and the lack of systematic literature reviews on this topic, this paper aims to gather and synthesize the current state of the art of this topic. To achieve this, this paper presents a systematic review of the literature, which selected 24 papers filtered from 428 articles found in computer databases in the last seven years. It was possible to synthesize important related information, which was grouped into three approaches: (i) based on both multiple descriptor extraction and data aggregation, (ii) based on both the aggregation of distance functions and fuzzy C-means, and (iii) based on fuzzy theory, namely type-2 fuzzy and neutrosophic sets. As a conclusion, this review provides interesting gaps that can be explored in future work.Publication Open Access From restricted equivalence functions on Ln to similarity measures between fuzzy multisets(IEEE, 2023) Ferrero Jaurrieta, Mikel; Takáč, Zdenko; Rodríguez Martínez, Iosu; Marco Detchart, Cedric; Bernardini, Ángela; Fernández Fernández, Francisco Javier; López Molina, Carlos; Bustince Sola, Humberto; Estadística, Informática y Matemáticas; Estatistika, Informatika eta MatematikaRestricted equivalence functions are well-known functions to compare two numbers in the interval between 0 and 1. Despite the numerous works studying the properties of restricted equivalence functions and their multiple applications as support for different similarity measures, an extension of these functions to an n-dimensional space is absent from the literature. In this paper, we present a novel contribution to the restricted equivalence function theory, allowing to compare multivalued elements. Specifically, we extend the notion of restricted equivalence functions from L to L n and present a new similarity construction on L n . Our proposal is tested in the context of color image anisotropic diffusion as an example of one of its many applications.