Bustince Sola, Humberto
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Bustince Sola
First Name
Humberto
person.page.departamento
Estadística, Informática y Matemáticas
person.page.instituteName
ISC. Institute of Smart Cities
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
4 results
Search Results
Now showing 1 - 4 of 4
Publication Open Access On the stability of fuzzy classifiers to noise induction(IEEE, 2023-11-09) Fumanal Idocin, Javier; Bustince Sola, Humberto; Andreu-Pérez, Javier; Hagras, Hani; Estadística, Informática y Matemáticas; Estatistika, Informatika eta MatematikaTabular data classification is one of the most important research problems in the artificial intelligence. One of the most important desired properties of the ideal classifier is that small changes in its input should not result in dramatic changes in its output. However, this might not be the case for many classifiers used in present day. Fuzzy classifiers should be stronger than their crisp counterparts, as they should be able to handle such changes using fuzzy sets and their membership functions. However, this hypothesis has not been empirically tested. Besides, the concept of 'small change' is somewhat imprecise and has not been quantified yet. In this work we propose to use small and progressively bigger changes in test samples to study how different crisp and fuzzy classifiers behave. We also study how to optimize classifiers to be more resistant to such kind of changes. Our results show that different fuzzy sets have different responses to this problem and have a smoother performance response compared to crisp classifiers. We also studied how to improve this and found that resistance to small changes can also result in a worse overall performance.Publication Embargo Extremal values-based aggregation functions(Elsevier, 2024-10-01) Halaš, Radomír; Mesiar, Radko; Kolesárová, Anna; Saadati, Reza; Herrera, Francisco; Rodríguez Martínez, Iosu; Bustince Sola, Humberto; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISCWe introduce and study aggregation functions based on extremal values, namely extended (𝑙, 𝑢)- aggregation functions whose outputs only depend on a fixed number 𝑙 of extremal lower input values and a fixed number 𝑢 of extremal upper input values, independently of the arity of the input 𝑛-tuples (𝑛 ≥ 𝑙 + 𝑢). We discuss several general properties of (𝑙, 𝑢)-aggregation functions and we study special (𝑙, 𝑢)-aggregation functions with neutral element, including t-conorms, t-norms and uninorms. We also study (𝑙, 𝑢)-aggregation functions defined by means of integrals with respect to discrete fuzzy measures, as well as (𝑙, 𝑢)-ordered weighted quasi-arithmetic means based on appropriate weighting vectors. We also stress some generalizations based on recently introduced new types of monotonicity. Some possible applications are sketched, too.Publication Open Access Supervised penalty-based aggregation applied to motor-imagery based brain-computer-interface(Elsevier, 2024) Fumanal Idocin, Javier; Vidaurre Arbizu, Carmen; Fernández Fernández, Francisco Javier; Gómez Fernández, Marisol; Andreu-Pérez, Javier; Prasad, M.; Bustince Sola, Humberto; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute for Advanced Materials and Mathematics - INAMAT2; Institute of Smart Cities - ISCIn this paper we propose a new version of penalty-based aggregation functions, the Multi Cost Aggregation choosing functions (MCAs), in which the function to minimize is constructed using a convex combination of two relaxed versions of restricted equivalence and dissimilarity functions instead of a penalty function. We additionally suggest two different alternatives to train a MCA in a supervised classification task in order to adapt the aggregation to each vector of inputs. We apply the proposed MCA in a Motor Imagery-based Brain- Computer Interface (MI-BCI) system to improve its decision making phase. We also evaluate the classical aggregation with our new aggregation procedure in two publicly available datasets. We obtain an accuracy of 82.31% for a left vs. right hand in the Clinical BCI challenge (CBCIC) dataset, and a performance of 62.43% for the four-class case in the BCI Competition IV 2a dataset compared to a 82.15% and 60.56% using the arithmetic mean. Finally, we have also tested the goodness of our proposal against other MI-BCI systems, obtaining better results than those using other decision making schemes and Deep Learning on the same datasets.Publication Open Access A supervised fuzzy measure learning algorithm for combining classifiers(Elsevier, 2023) Uriz Martín, Mikel Xabier; Paternain Dallo, Daniel; Bustince Sola, Humberto; Galar Idoate, Mikel; Institute of Smart Cities - ISC; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaFuzzy measure-based aggregations allow taking interactions among coalitions of the input sources into account. Their main drawback when applying them in real-world problems, such as combining classifier ensembles, is how to define the fuzzy measure that governs the aggregation and specifies the interactions. However, their usage for combining classifiers has shown its advantage. The learning of the fuzzy measure can be done either in a supervised or unsupervised manner. This paper focuses on supervised approaches. Existing supervised approaches are designed to minimize the mean squared error cost function, even for classification problems. We propose a new fuzzy measure learning algorithm for combining classifiers that can optimize any cost function. To do so, advancements from deep learning frameworks are considered such as automatic gradient computation. Therefore, a gradient-based method is presented together with three new update policies that are required to preserve the monotonicity constraints of the fuzzy measures. The usefulness of the proposal and the optimization of cross-entropy cost are shown in an extensive experimental study with 58 datasets corresponding to both binary and multi-class classification problems. In this framework, the proposed method is compared with other state-of-the-art methods for fuzzy measure learning.