Bustince Sola, Humberto
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Bustince Sola
First Name
Humberto
person.page.departamento
Estadística, Informática y Matemáticas
person.page.instituteName
ISC. Institute of Smart Cities
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
2 results
Search Results
Now showing 1 - 2 of 2
Publication Open Access Admissible OWA operators for fuzzy numbers(Elsevier, 2024) García-Zamora, Diego; Cruz, Anderson; Neres, Fernando; Santiago, Regivan; Roldán López de Hierro, Antonio Francisco; Paiva, Rui; Pereira Dimuro, Graçaliz; Martínez López, Luis; Bedregal, Benjamin; Bustince Sola, Humberto; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISCOrdered Weighted Averaging (OWA) operators are some of the most widely used aggregation functions in classic literature, but their application to fuzzy numbers has been limited due to the complexity of defining a total order in fuzzy contexts. However, the recent notion of admissible order for fuzzy numbers provides an effective method to totally order them by refining a given partial order. Therefore, this paper is devoted to defining OWA operators for fuzzy numbers with respect to admissible orders and investigating their properties. Firstly, we define the OWA operators associated with such admissible orders and then we show their main properties. Afterward, an example is presented to illustrate the applicability of these AOWA operators in linguistic decision-making. In this regard, we also develop an admissible order for trapezoidal fuzzy numbers that can be efficiently applied in practice.Publication Open Access Admissible orders on fuzzy numbers(IEEE, 2022) Zumelzu, Nicolás; Bedregal, Benjamin; Mansilla, Edmundo; Bustince Sola, Humberto; Díaz, Roberto; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC; Estadística, Informática y MatemáticasFrom the more than two hundred partial orders for fuzzy numbers proposed in the literature, only a few are total. In this paper, we introduce the notion of admissible order for fuzzy numbers equipped with a partial order, i.e. a total order which refines the partial order. In particular, it is given special attention to the partial order proposed by Klir and Yuan in 1995. Moreover, we propose a method to construct admissible orders on fuzzy numbers in terms of linear orders defined for intervals considering a strictly increasing upper dense sequence, proving that this order is admissible for a given partial order. Finally, we use admissible orders to ranking the path costs in fuzzy weighted graphs. IEEE