Bustince Sola, Humberto

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Bustince Sola

First Name

Humberto

person.page.departamento

Estadística, Informática y Matemáticas

person.page.instituteName

ISC. Institute of Smart Cities

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 2 of 2
  • PublicationOpen Access
    A genetic tuning to improve the performance of fuzzy rule-based classification systems with interval-valued fuzzy sets: degree of ignorance and lateral position
    (Elsevier, 2011) Sanz Delgado, José Antonio; Fernández, Alberto; Bustince Sola, Humberto; Herrera, Francisco; Automática y Computación; Automatika eta Konputazioa
    Fuzzy Rule-Based Systems are appropriate tools to deal with classification problems due to their good properties. However, they can suffer a lack of system accuracy as a result of the uncertainty inherent in the definition of the membership functions and the limitation of the homogeneous distribution of the linguistic labels. The aim of the paper is to improve the performance of Fuzzy Rule-Based Classification Systems by means of the Theory of Interval-Valued Fuzzy Sets and a post-processing genetic tuning step. In order to build the Interval-Valued Fuzzy Sets we define a new function called weak ignorance for modeling the uncertainty associated with the definition of the membership functions. Next, we adapt the fuzzy partitions to the problem in an optimal way through a cooperative evolutionary tuning in which we handle both the degree of ignorance and the lateral position (based on the 2-tuples fuzzy linguistic representation) of the linguistic labels. The experimental study is carried out over a large collection of data-sets and it is supported by a statistical analysis. Our results show empirically that the use of our methodology outperforms the initial Fuzzy-Rule Based Classification System. The application of our cooperative tuning enhances the results provided by the use of the isolated tuning approaches and also improves the behavior of the genetic tuning based on the 3-tuples fuzzy linguistic representation.
  • PublicationOpen Access
    IIVFDT: ignorance functions based interval-valued fuzzy decision tree with genetic tuning
    (World Scientific Publishing Company, 2012) Sanz Delgado, José Antonio; Fernández, Alberto; Bustince Sola, Humberto; Herrera, Francisco; Automática y Computación; Automatika eta Konputazioa
    The choice of membership functions plays an essential role in the success of fuzzy systems. This is a complex problem due to the possible lack of knowledge when assigning punctual values as membership degrees. To face this handicap, we propose a methodology called Ignorance functions based Interval-Valued Fuzzy Decision Tree with genetic tuning, IIVFDT for short, which allows to improve the performance of fuzzy decision trees by taking into account the ignorance degree. This ignorance degree is the result of a weak ignorance function applied to the punctual value set as membership degree. Our IIVFDT proposal is composed of four steps: (1) the base fuzzy decision tree is generated using the fuzzy ID3 algorithm; (2) the linguistic labels are modeled with Interval-Valued Fuzzy Sets. To do so, a new parametrized construction method of Interval-Valued Fuzzy Sets is defined, whose length represents such ignorance degree; (3) the fuzzy reasoning method is extended to work with this representation of the linguistic terms; (4) an evolutionary tuning step is applied for computing the optimal ignorance degree for each Interval-Valued Fuzzy Set. The experimental study shows that the IIVFDT method allows the results provided by the initial fuzzy ID3 with and without Interval-Valued Fuzzy Sets to be outperformed. The suitability of the proposed methodology is shown with respect to both several state-of-the-art fuzzy decision trees and C4.5. Furthermore, we analyze the quality of our approach versus two methods that learn the fuzzy decision tree using genetic algorithms. Finally, we show that a superior performance can be achieved by means of the positive synergy obtained when applying the well known genetic tuning of the lateral position after the application of the IIVFDT method. The choice of membership functions plays an essential role in the success of fuzzy systems. This is a complex problem due to the possible lack of knowledge when assigning punctual values as membership degrees. To face this handicap, we propose a methodology called Ignorance functions based Interval-Valued Fuzzy Decision Tree with genetic tuning, IIVFDT for short, which allows to improve the performance of fuzzy decision trees by taking into account the ignorance degree. This ignorance degree is the result of a weak ignorance function applied to the punctual value set as membership degree. Our IIVFDT proposal is composed of four steps: (1) the base fuzzy decision tree is generated using the fuzzy ID3 algorithm; (2) the linguistic labels are modeled with Interval-Valued Fuzzy Sets. To do so, a new parametrized construction method of Interval-Valued Fuzzy Sets is defined, whose length represents such ignorance degree; (3) the fuzzy reasoning method is extended to work with this representation of the linguistic terms; (4) an evolutionary tuning step is applied for computing the optimal ignorance degree for each Interval-Valued Fuzzy Set. The experimental study shows that the IIVFDT method allows the results provided by the initial fuzzy ID3 with and without Interval-Valued Fuzzy Sets to be outperformed. The suitability of the proposed methodology is shown with respect to both several state-of-the-art fuzzy decision trees and C4.5. Furthermore, we analyze the quality of our approach versus two methods that learn the fuzzy decision tree using genetic algorithms. Finally, we show that a superior performance can be achieved by means of the positive synergy obtained when applying the well known genetic tuning of the lateral position after the application of the IIVFDT method.