Bustince Sola, Humberto
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Bustince Sola
First Name
Humberto
person.page.departamento
Estadística, Informática y Matemáticas
person.page.instituteName
ISC. Institute of Smart Cities
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
2 results
Search Results
Now showing 1 - 2 of 2
Publication Open Access d-XC integrals: on the generalization of the expanded form of the Choquet integral by restricted dissimilarity functions and their applications(IEEE, 2022) Wieczynski, Jonata; Fumanal Idocin, Javier; Lucca, Giancarlo; Borges, Eduardo N.; Da Cruz Asmus, Tiago; Emmendorfer, Leonardo R.; Bustince Sola, Humberto; Pereira Dimuro, Graçaliz; Automática y Computación; Automatika eta Konputazioa; Estadística, Informática y Matemáticas; Estatistika, Informatika eta MatematikaRestricted dissimilarity functions (RDFs) were introduced to overcome problems resulting from the adoption of the standard difference. Based on those RDFs, Bustince et al. introduced a generalization of the Choquet integral (CI), called d-Choquet integral, where the authors replaced standard differences with RDFs, providing interesting theoretical results. Motivated by such worthy properties, joint with the excellent performance in applications of other generalizations of the CI (using its expanded form, mainly), this paper introduces a generalization of the expanded form of the standard Choquet integral (X-CI) based on RDFs, which we named d-XC integrals. We present not only relevant theoretical results but also two examples of applications. We apply d-XC integrals in two problems in decision making, namely a supplier selection problem (which is a multi-criteria decision making problem) and a classification problem in signal processing, based on motor-imagery brain-computer interface (MI-BCI). We found that two d-XC integrals provided better results when compared to the original CI in the supplier selection problem. Besides that, one of the d-XC integrals performed better than any previous MI-BCI results obtained with this framework in the considered signal processing problem.Publication Open Access dCF-integrals: generalizing CF-integrals by means of restricted dissimilarity functions(IEEE, 2022) Wieczynski, Jonata; Lucca, Giancarlo; Pereira Dimuro, Graçaliz; Borges, Eduardo N.; Sanz Delgado, José Antonio; Da Cruz Asmus, Tiago; Fernández Fernández, Francisco Javier; Bustince Sola, Humberto; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC; Estadística, Informática y Matemáticas; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa, PJUPNA1926The Choquet integral (CI) is an averaging aggregation function that has been used, e.g., in the fuzzy reasoning method (FRM) of fuzzy rule-based classification systems (FRBCSs) and in multicriteria decision making in order to take into account the interactions among data/criteria. Several generalizations of the CI have been proposed in the literature in order to improve the performance of FRBCSs and also to provide more flexibility in the different models by relaxing both the monotonicity requirement and averaging conditions of aggregation functions. An important generalization is the CF -integrals, which are preaggregation functions that may present interesting nonaveraging behavior depending on the function F adopted in the construction and, in this case, offering competitive results in classification. Recently, the concept of d-Choquet integrals was introduced as a generalization of the CI by restricted dissimilarity functions (RDFs), improving the usability of CIs, as when comparing inputs by the usual difference may not be viable. The objective of this article is to introduce the concept of dCF -integrals, which is a generalization of CF -integrals by RDFs. The aim is to analyze whether the usage of dCF -integrals in the FRM of FRBCSs represents a good alternative toward the standard CF -integrals that just consider the difference as a dissimilarity measure. For that, we consider six RDFs combined with five fuzzy measures, applied with more than 20 functions F . The analysis of the results is based on statistical tests, demonstrating their efficiency. Additionally, comparing the applicability of dCF -integrals versus CF -integrals, the range of the good generalizations of the former is much larger than that of the latter.