Labarga Gutiérrez, Alberto

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Labarga Gutiérrez

First Name

Alberto

person.page.departamento

Ciencias de la Salud

person.page.instituteName

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 2 of 2
  • PublicationOpen Access
    Circular RNA expression profile in blood according to ischemic stroke etiology
    (BioMed Central, 2020) Ostolaza, Aiora; Blanco Luquin, Idoia; Urdánoz Casado, Amaya; Rubio, Idoya; Labarga Gutiérrez, Alberto; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Gobierno de Navarra / Nafarroako Gobernua
    Background: The discovery of novel biomarkers of stroke etiology would be most helpful in management of acute ischemic stroke patients. Recently, circular RNAs (circRNAs) have been proposed as candidate biomarkers of neurological conditions due to its high stability. circRNAs function as sponges, sequestering miRNAs and are involved in most relevant biological functions. Our aim was to identify differentially expressed circRNAs in acute ischemic stroke patients according to stroke etiology. Methods: A comprehensive expression profile of blood circRNAs was conducted by Arraystar Human circRNA arrays (13,617 probes) on a discovery cohort of 30 stroke patients with different stroke etiologies by TOAST classification. Real-time quantitative PCR (RT-qPCR) was used to validate array results in a cohort of 50 stroke patients. Functional in silico analysis was performed to identify potential interactions with microRNAs (miRNAs) and pathways underlying deregulated circRNAs. Results: A set of 60 circRNAs were found to be upregulated in atherotrombotic versus cardioembolic strokes (fold-change > = 1.5 and p-value ≤ 0.05). Differential expression of hsa_circRNA_102488, originated from UBA52 gene, was replicated in the validation cohort. RNA-binding proteins (RBPs) sites of hsa_circRNA_102488 clustered around AGO2 and FUS proteins. Further functional analysis revealed interactions between deregulated circRNAs and a set of miRNAs involved in stroke-related pathways, such as fatty acid biogenesis or lysine degradation. Conclusion: Different stroke subtypes show specific profiles of circRNAs expression. circRNAs may serve as a new source of biomarkers of stroke etiology in acute ischemic stroke patients.
  • PublicationOpen Access
    Integrative multi-omics analysis for etiology classification and biomarker discovery in stroke: advancing towards precision medicine
    (MDPI, 2024) Labarga Gutiérrez, Alberto; Martínez-González, Judith; Barajas Vélez, Miguel Ángel; Ciencias de la Salud; Osasun Zientziak
    Recent advancements in high-throughput omics technologies have opened new avenues for investigating stroke at the molecular level and elucidating the intricate interactions among various molecular components. We present a novel approach for multi-omics data integration on knowledge graphs and have applied it to a stroke etiology classification task of 30 stroke patients through the integrative analysis of DNA methylation and mRNA, miRNA, and circRNA. This approach has demonstrated promising performance as compared to other existing single technology approaches.