Martínez Echeverri, Álvaro

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Martínez Echeverri

First Name

Álvaro

person.page.departamento

Ingeniería

person.page.instituteName

ISC. Institute of Smart Cities

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 3 of 3
  • PublicationOpen Access
    Experimental and computational study on thermoelectric generators using thermosyphons with phase change as heat exchangers
    (Elsevier, 2017) Araiz Vega, Miguel; Martínez Echeverri, Álvaro; Astrain Ulibarrena, David; Aranguren Garacochea, Patricia; Mekanika, Energetika eta Materialen Ingeniaritza; Institute for Advanced Materials and Mathematics - INAMAT2; Ingeniería Mecánica, Energética y de Materiales
    An important issue in thermoelectric generators is the thermal design of the heat exchangers since it can improve their performance by increasing the heat absorbed or dissipated by the thermoelectric modules. Due to its several advantages, compared to conventional dissipation systems, a thermosyphon heat exchanger with phase change is proposed to be placed on the cold side of thermoelectric generators. Some of these advantages are: high heat-transfer rates; absence of moving parts and lack of auxiliary con- sumption (because fans or pumps are not required); and the fact that these systems are wickless. A com- putational model is developed to design and predict the behaviour of this heat exchangers. Furthermore, a prototype has been built and tested in order to demonstrate its performance and validate the compu- tational model. The model predicts the thermal resistance of the heat exchanger with a relative error in the interval [?8.09;7.83] in the 95% of the cases. Finally, the use of thermosyphons with phase change in thermoelectric generators has been studied in a waste-heat recovery application, stating that including them on the cold side of the generators improves the net thermoelectric production by 36% compared to that obtained with finned dissipators under forced convection.
  • PublicationOpen Access
    Experimental and computational investigation of passive heat exchangers to enhance the performance of a geothermal thermoelectric generator
    (Elsevier, 2024) Pascual Lezaun, Nerea; Alegría Cía, Patricia; Araiz Vega, Miguel; Martínez Echeverri, Álvaro; Astrain Ulibarrena, David; Ingeniería; Ingeniaritza; Institute of Smart Cities - ISC
    Thermoelectric devices hold significant promise for generating electricity from geothermal heat, enabling the powering of measuring equipment in remote locations without the need for moving parts. Nevertheless, most developed geothermal thermoelectric generators employ fans and pumps to enhance heat transfer, thereby compromising the robustness and reliability inherent to thermoelectricity. Furthermore, there is a lack of research on passive heat exchangers for geothermal thermoelectric generators, particularly in studying their operation under a wide range of meteorological conditions. Therefore, this paper conducts a comprehensive analysis of passive heat exchangers for the cold side of the generators. Phase-change-based heat exchangers differing in their length and fluid are studied experimentally, along with a fin dissipator. Additionally, the influence of wind velocity on heat transfer and mechanical requirements is further explored through a Computational Fluid Dynamics model. The most significant outcome is quantifying the impact of the design parameters and operational variables on the electrical production of the thermoelectric generator. Accordingly, this research aims to broaden the application of these generators to extreme environments, such as Deception Island in Antarctica. Under average operational conditions, generators incorporating 400 mm water heat pipes generate 0.95 W per thermoelectric module, while those incorporating heat pipes with methanol achieve an average of 0.70 W. Moreover, water and methanol-based systems produce 120% and 60% more power than generators using a fin dissipator. Nonetheless, for temperatures beyond -6.5 °C, water might freeze and the methanol-based heat exchangers become more suitable.
  • PublicationOpen Access
    Prospects of waste-heat recovery from a real industry using thermoelectric generators: economic and power output analysis
    (Elsevier, 2020) Araiz Vega, Miguel; Casi Satrústegui, Álvaro; Catalán Ros, Leyre; Martínez Echeverri, Álvaro; Astrain Ulibarrena, David; Ingeniaritza; Institute of Smart Cities - ISC; Ingeniería; Gobierno de Navarra / Nafarroako Gobernua, 0011-1365-2018-000101
    One of the options to reduce industrial energy costs and the environmental impact is to recover the waste-heat produce in some processes. This paper proposes the use of thermoelectric generators at a stone wool manufacturing plant to transform waste-heat from a hot gas flow into useful electricity. A combination of two computational models, previously developed and validated, has been used to perform the optimization from a double point of view: power output and economic cost. The proposed thermoelectric generator includes fin dissipaters and biphasic thermosyphons as the hot and cold side heat exchangers respectively. The model takes into account the temperature drop along the duct where the gases flow, the electric consumption of the auxiliary equipment, and the configuration and geometry of the heat exchangers. After the simulations a maximum net power production of 45 838 W is achieved considering an occupancy ratio of 0.40 and a fin spacing of 10 mm. The installation cost is minimized to 10.6 €/W with an occupancy ratio of 0.24. Besides, the Levelised Cost of Electricity, LCOE, is estimated for a thermoelectric generator for the first time. It is necessary to use standar methodologies to compare this technology to others. The LCOE estimated for the proposed design is around 15 c€/kWh within the ranges of current energy sources, proving, in this way, the capabilities of waste-heat recovery from industrial processes at reasonable prices with thermoelectric generators.