Martínez Echeverri, Álvaro

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Martínez Echeverri

First Name

Álvaro

person.page.departamento

Ingeniería

person.page.instituteName

ISC. Institute of Smart Cities

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 10 of 10
  • PublicationOpen Access
    Net thermoelectric power generation improvement through heat transfer optimization
    (Elsevier, 2017) Aranguren Garacochea, Patricia; Astrain Ulibarrena, David; Rodríguez García, Antonio; Martínez Echeverri, Álvaro; Ingeniería Mecánica, Energética y de Materiales; Mekanika, Energetika eta Materialen Ingeniaritza
    Thermoelectric generation contributes to obtain a more sustainable energetic system giving its potential to harvest waste heat and convert it into electric power. In the present study a computational optimal net generation of 108.05 MWh/year was produced out of the flue gases of a real tile furnace located in Spain (the equivalent to supply the energy to 31 Spanish dwellings). This maximum generation has been obtained through the optimization of the hot and cold heat exchangers, the number of thermoelectric modules (TEMs) installed and the mass flows of the refrigerants, including the temperature loss of the flue gases and the influence of the heat power to dissipate over the heat dissipators. The results are conclusive, the installation of more TEMs does not always imply higher thermoelectric generation, so the occupancy ratio (δ) has to be optimized. The optimal generation has been achieved covering the 42 % of the surface of the chimney of the tile furnace with TEMs and using heat pipes on the cold side, which present smaller thermal resistances than the finned dissipators for similar consumptions of their fans. Moreover, the high influence of the consumption of the auxiliary equipment shows the importance of considering it to obtain realistic usable electric energy from real applications.
  • PublicationOpen Access
    Development and experimental validation of a thermoelectric test bench for laboratory lessons
    (OmniaScience, 2013) Rodríguez García, Antonio; Astrain Ulibarrena, David; Martínez Echeverri, Álvaro; Aranguren Garacochea, Patricia; Pérez Artieda, Miren Gurutze; Ingeniería Mecánica, Energética y de Materiales; Mekanika, Energetika eta Materialen Ingeniaritza
    The refrigeration process reduces the temperature of a space or a given volume while the power generation process employs a source of thermal energy to generate electrical power. Because of the importance of these two processes, training of engineers in this area is of great interest. In engineering courses it is normally studied the vapor compression and absorption refrigeration, and power generation systems such as gas turbine and steam turbine. Another type of cooling and generation less studied within the engineering curriculum, having a great interest, it is cooling and thermal generation based on Peltier and Seebeck effects. The theoretical concepts are useful, but students have difculties understanding the physical meaning of their possible applications. Providing students with tools to test and apply the theory in real applications, will lead to a better understanding of the subject. Engineers must have strong theoretical, computational and also experimental skills. A prototype test bench has been built and experimentally validated to perform practical lessons of thermoelectric generation and refrigeration. Using this prototype students learn the most effective way of cooling systems and thermal power generation as well as basic concepts associated with thermoelectricity. It has been proven that students learn the process of data acquisition, and the technology used in thermoelectric devices. These practical lessons are implemented for a 60 people group of students in the development of subject of Thermodynamic including in the Degree in Engineering in Industrial Technologies of Public University of Navarra.
  • PublicationOpen Access
    Study of thermoelectric systems applied to electric power generation
    (Elsevier, 2009) Rodríguez García, Antonio; González Vian, José; Astrain Ulibarrena, David; Martínez Echeverri, Álvaro; Ingeniería Mecánica, Energética y de Materiales; Mekanika, Energetika eta Materialen Ingeniaritza
    A computational model has been developed in order to simulate the thermal and electric behaviour of the thermoelectric generators. This model solves the non linear system of equations of the thermoelectric and heat transfer equations. The inputs of the program are the thermoelectric parameters as a function of the temperature and the boundary conditions, (room temperature and residual heat flux). The outputs are the temperature values of all the elements forming the thermoelectric generator, (performance, electric power, voltage and electric current generated). The model solves the equation system using the finite difference method and semi-empiric expressions for the convection coefficients. It has been built a thermoelectric electric power generation test bench in order to validate and determine the accuracy of the computational model, which maximum error is lower than 5%. The objective of this study is to create a design tool that allows us to solve the system of equations involved in the electric generation process without needing to impose boundary conditions that are not known in the design phase, as the temperature of the Peltier modules. With the computational model we study the influence of the heat flux supplied as well as the room temperature in the electric power generated.
  • PublicationOpen Access
    Computational study on the thermal influence of the components of a thermoelectric ice maker on the ice production
    (Springer US, 2012) Rodríguez García, Antonio; Astrain Ulibarrena, David; Martínez Echeverri, Álvaro; González Vian, José; Ingeniería Mecánica, Energética y de Materiales; Mekanika, Energetika eta Materialen Ingeniaritza
    The main objective of this paper is to study the thermal resistances of two components of a thermoelectric ice maker installed in a no-frost refrigerator, in order to optimize the ice production. This study is conducted via a computational model developed by the Thermal and Fluids Research Group from Public University of Navarre, explained and validated in previous papers. Firstly, three dissipaters with different space between fins are simulated using Computational Fluid Dynamics Fluent to study their influence on both the ice production and the performance of the refrigerator. The computational model predicts a maximum production of 2.82 kg/day of ice with less than 7 W of extra electric power consumption, though these values depend to a great extent on the cooling and freezing power of the refrigerator. Secondly, this work focuses on reducing the size of the components in order to save raw material and reduce the cost of the device. The computational model predicts that the last design produces 2.42 kg/day of ice, saves 65 % of raw material and reduces to the half the expenses assigned to the thermoelectric modules.
  • PublicationOpen Access
    Experimental investigation of the applicability of a thermoelectric generator to recover waste heat from a combustion chamber
    (Elsevier, 2015) Aranguren Garacochea, Patricia; Astrain Ulibarrena, David; Rodríguez García, Antonio; Martínez Echeverri, Álvaro; Ingeniería Mecánica, Energética y de Materiales; Mekanika, Energetika eta Materialen Ingeniaritza
    A thermoelectric generator prototype has been built; it produces 21.56 W of net power, the produced thermoelectric power minus the consumption of the auxiliary equipment, using an area of 0.25 m2 (approximately 100 W/m2). The prototype is located at the exhaust of a combustion chamber and it is provided with 48 thermoelectric modules and two different kinds of heat exchangers, finned heat sinks and heat pipes. Globally, the 40 % of the primary energy used is thrown to the ambient as waste heat; one of the many different applications in which thermoelectricity can be applied is to harvest waste heat to produce electrical power. Besides, the influence on the thermoelectric and on the net power generation of key parameters such as the temperature and mass flow of the exhaust gases, the heat dissipation systems in charge of dispatching the heat into the ambient and the consumption of the auxiliary equipment has been studied. In terms of heat dissipation, the heat pipes outperform the finned dissipators, a 43 % more net power is obtained.
  • PublicationOpen Access
    Influence of temperature and aging on the thermal contact resistance in thermoelectric devices
    (Springer, 2020) Rodríguez García, Antonio; Pérez Artieda, Miren Gurutze; Beisti Antoñanzas, Irene; Astrain Ulibarrena, David; Martínez Echeverri, Álvaro; Ingeniaritza; Institute of Smart Cities - ISC; Ingeniería
    During thermal design in the first phases development, thermoelectric systems, such as thermoelectric generators, the most important parameter affecting the performance is thermal resistance of the components. This paper focusses on the thermal contact resistance (TCR), analyzing the influence of aging and temperature on different thermal interface materials (TIMs), i.e., thermal paste, graphite and indium. In previous papers, TCR has been studied depending on parameters such as surface roughness, bonding pressure, thermal conductivity and surface hardness. However, in thermoelectric applications, a relevant aspect to consider when choosing a TIM is aging due to thermal stress. The exposure of this type of material to high temperatures for long periods of time leads to deterioration, which causes an increase in the TCR impairing the conduction of the heat flow. Therefore, there is a need to study the behavior of TIMs exposed to temperatures typical in thermoelectric generators to make a correct selection of the TIM. It has been observed that exposure to temperatures of around 180°C induces a significant increase in the thermal impedance of the three TIMs under study, although this effect is much more relevant for thermal paste. The contact, comprising steel, thermal paste and ceramic, presents a 300% increase in the thermal impedance after 70 days of aging, whereas that exceeds 185% for the contact of aluminum, thermal paste and ceramic. In the tests with exposure temperature of 60°C, there is no observed decrease in the thermal impedance.
  • PublicationOpen Access
    Improvement of a thermoelectric and vapour compression hybrid refrigerator
    (Elsevier, 2012) Astrain Ulibarrena, David; Martínez Echeverri, Álvaro; Rodríguez García, Antonio; Ingeniería Mecánica, Energética y de Materiales; Mekanika, Energetika eta Materialen Ingeniaritza
    This paper presents the improvement in the performance of a domestic hybrid refrigerator that combines vapour compression technology for the cooler and freezer compartments, and thermoelectric technology for a new compartment. The heat emitted by the Peltier modules is discharged into the freezer compartment, forming a cascade refrigeration system. This configuration leads to a significant improvement in the coefficient of operation. Thus, the electric power consumption of the modules and the refrigerator decrease by 95 % and 20 % respectively, with respect to those attained with a cascade refrigeration system connected with the cooler compartment. The optimization process is based on a computational model that simulates the behaviour of the whole refrigerator. Two prototypes have been built and tested. Experimental results indicate that the temperature of the new compartment is easily set up at any value between 0 and -4 ºC, the oscillation of this temperature is always lower than 0.4 ºC, and the electric power consumption is low enough to include this hybrid refrigerator into energy efficiency class A, according European rules and regulations.
  • PublicationOpen Access
    Zero-power-consumption thermoelectric system to prevent overheating in solar collectors
    (Elsevier, 2014) Martínez Echeverri, Álvaro; Astrain Ulibarrena, David; Rodríguez García, Antonio; Ingeniería Mecánica, Energética y de Materiales; Mekanika, Energetika eta Materialen Ingeniaritza
    Highly promoted by the European Union Climate and Energy Package for 2020, solar collectors stand out as the most promising alternative to meet water heating demands. One of the most limiting problems in these systems involves the overheating of the working fluid, resulting in rapid fluid degradation, scaling and premature component failure. This paper presents the computational design of a zero-power-consumption system that combines thermoelectric-self-cooling technology and thermosyphon effect to dissipate the excess heat from a real solar-collector installation. Thermoelectric self-cooling is a novel thermoelectric application proven to enhance the heat dissipation of any hot spot without electricity consumption. The simplest design outperforms currently-used static and dynamic dissipaters for overheating protection in solar collectors, since it increases the global heat transfer coefficient of a static dissipater by 75 % and requires no electricity. Likewise, the final design presents a global heat transfer coefficient of 15.23 W/(m2K), 155 % higher than that provided by static dissipaters, forming a reliable, robust and autonomous system that stands out as a promising alternative to prevent the overheating of solar collectors.
  • PublicationOpen Access
    Experimental study and optimization of thermoelectric-driven autonomous sensors for the chimney of a biomass power plant
    (2014) Rodríguez García, Antonio; Astrain Ulibarrena, David; Martínez Echeverri, Álvaro; Aranguren Garacochea, Patricia; Ingeniería Mecánica, Energética y de Materiales; Mekanika, Energetika eta Materialen Ingeniaritza
    In the work discussed in this paper a thermoelectric generator was developed to harness waste heat from the exhaust gas of a boiler in a biomass power plant and thus generate electric power to operate a flowmeter installed in the chimney, to make it autonomous. The main objective was to conduct an experimental study to optimize a previous design obtained after computational work based on a simulation model for thermoelectric generators. First, several places inside and outside the chimney were considered as sites for the thermoelectricity-driven autonomous sensor. Second, the thermoelectric generator was built and tested to assess the effect of the cold-side heat exchanger on the electric power, power consumption by the flowmeter, and transmission frequency. These tests provided the best configuration for the heat exchanger, which met the transmission requirements for different working conditions. The final design is able to transmit every second and requires neither batteries nor electric wires. It is a promising application in the field of thermoelectric generation.
  • PublicationOpen Access
    Thermoelectric-driven autonomous sensors for a biomass power plant
    (Springer US, 2013) Rodríguez García, Antonio; Astrain Ulibarrena, David; Martínez Echeverri, Álvaro; Gubía Villabona, Eugenio; Sorbet Presentación, Francisco Javier; Ingeniería Mecánica, Energética y de Materiales; Mekanika, Energetika eta Materialen Ingeniaritza
    This work presents the design and development of a thermoelectric generator intended to harness waste heat in a biomass power plant, and generate electric power to operate sensors and the required electronics for wireless communication. The first objective of the work is to design the optimum thermoelectric generator to harness heat from a hot surface, and generate electric power to operate a flowmeter and a wireless transmitter. The process is conducted by using a computational model, presented in previous papers, to determine the final design that meets the requirements of electric power consumption and number of transmissions per minute. Finally, the thermoelectric generator is simulated to evaluate its performance. The final device transmits information every 5 s. Moreover, it is completely autonomous and can be easily installed, since no electric wires are required.