Sánchez González, Arturo

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Sánchez González

First Name

Arturo

person.page.departamento

Ingeniería Eléctrica, Electrónica y de Comunicación

person.page.instituteName

ISC. Institute of Smart Cities

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 2 of 2
  • PublicationOpen Access
    Wavelength-switchable L-band fiber laser assisted by random reflectors
    (EDP Open, 2023) Pérez Herrera, Rosa Ana; Roldán Varona, Pablo; Sánchez González, Arturo; Rodríguez Cobo, Luis; López Higuera, José Miguel; López-Amo Sáinz, Manuel; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute of Smart Cities - ISC; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    A wavelength-switchable L-band erbium-doped fiber laser (EDFL) assisted by an artificially controlled backscattering (ACB) fiber reflector is here presented. This random reflector was inscribed by femtosecond (fs) laser direct writing on the axial axis of a multimode fiber with 50 lm core and 125 lm cladding with a length of 17 mm. This microstructure was placed inside a surgical syringe to be positioned in the center of a high-precision rotation mount to accurately control its angle of rotation. Only by rotating this mount, three different output spectra were obtained: a single wavelength lasing centered at 1574.75 nm, a dual wavelength lasing centered at 1574.75 nm and 1575.75 nm, and a single wavelength lasing centered at 1575.5 nm. All of them showed an optical signal-to-noise ratio (OSNR) of around 60 dB when pumped at 300 mW
  • PublicationOpen Access
    High performance fiber laser resonator for dual band (C and L) sensing
    (IEEE, 2022) Sánchez González, Arturo; Pérez Herrera, Rosa Ana; Roldán Varona, Pablo; Rodríguez Cobo, Luis; López Higuera, José Miguel; López-Amo Sáinz, Manuel; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación
    This work presents an experimental analysis and comparison of the performance of quasi-randomly distributed reflectors inscribed into a single-mode fiber as a sensing mirror both in C- and L-band. Single-wavelength emission has been obtained in either band when using these artificially controlled backscattering fiber reflectors in a ring-cavity fiber laser. Single-longitudinal mode operation with an optical signal to noise ratio (OSNR) of 47 dB and an output power instability as low as 0.04 dB have been measured when employing a C-band optical amplifier. When replaced by an L-band optical amplifier, a single-longitudinal mode behavior has also been obtained, showing an OSNR of 44 dB and an output power instability of 0.09 dB. Regarding their performance as fiber-laser sensing systems, very similar temperature and strain sensitivities have been obtained in both bands, comparable to fiber Bragg grating sensors in the case of temperature and one order of magnitude higher in the case of strain variations.