Person:
Giménez Díaz, Rafael

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Giménez Díaz

First Name

Rafael

person.page.departamento

Ingeniería

person.page.instituteName

IS-FOOD. Research Institute on Innovation & Sustainable Development in Food Chain

ORCID

0000-0003-3210-0578

person.page.upna

6698

Name

Search Results

Now showing 1 - 7 of 7
  • PublicationOpen Access
    Relationship of weather types on the seasonal and spatial variability of rainfall, runoff, and sediment yield in the western Mediterranean basin
    (MDPI, 2020) Peña Angulo, D.; Nadal-Romero, Estela; Campo-Bescós, Miguel; Casalí Sarasíbar, Javier; Giménez Díaz, Rafael; Ingeniaritza; Institute on Innovation and Sustainable Development in Food Chain - ISFOOD; Ingeniería
    Rainfall is the key factor to understand soil erosion processes, mechanisms, and rates. Most research was conducted to determine rainfall characteristics and their relationship with soil erosion (erosivity) but there is little information about how atmospheric patterns control soil losses, and this is important to enable sustainable environmental planning and risk prevention. We investigated the temporal and spatial variability of the relationships of rainfall, runoff, and sediment yield with atmospheric patterns (weather types, WTs) in the western Mediterranean basin. For this purpose, we analyzed a large database of rainfall events collected between 1985 and 2015 in 46 experimental plots and catchments with the aim to: (i) evaluate seasonal differences in the contribution of rainfall, runoff, and sediment yield produced by the WTs; and (ii) to analyze the seasonal efficiency of the different WTs (relation frequency and magnitude) related to rainfall, runoff, and sediment yield. The results indicate two different temporal patterns: the first weather type exhibits (during the cold period: autumn and winter) westerly flows that produce the highest rainfall, runoff, and sediment yield values throughout the territory; the second weather type exhibits easterly flows that predominate during the warm period (spring and summer) and it is located on the Mediterranean coast of the Iberian Peninsula. However, the cyclonic situations present high frequency throughout the whole year with a large influence extended around the western Mediterranean basin. Contrary, the anticyclonic situations, despite of its high frequency, do not contribute significantly to the total rainfall, runoff, and sediment (showing the lowest efficiency) because of atmospheric stability that currently characterize this atmospheric pattern. Our approach helps to better understand the relationship of WTs on the seasonal and spatial variability of rainfall, runoff and sediment yield with a regional scale based on the large dataset and number of soil erosion experimental stations.
  • PublicationOpen Access
    Challenges and progresses in the detailed estimation of sediment export in agricultural watersheds in Navarra (Spain) after two decades of experience
    (Elsevier, 2023) Barberena Ruiz, Íñigo; Luquin Oroz, Eduardo Adrián; Campo-Bescós, Miguel; Eslava, Javier; Giménez Díaz, Rafael; Casalí Sarasíbar, Javier; Ingeniería; Ingeniaritza; Institute on Innovation and Sustainable Development in Food Chain - ISFOOD
    Soil erosion is a very serious environmental problem worldwide, with agriculture considered the main source of sediment in inland waters. In order to determine the extent and importance of soil erosion in the Spanish region of Navarra, in 1995 the Government of Navarra established the Network of Experimental Agricultural Watersheds (NEAWGN), which consists of five small watersheds representative of local conditions. In each watershed, key hydrometeorological variables, including turbidity, were recorded every 10 min, and daily samples were taken to determine suspended sediment concentration. In 2006, the frequency of suspended sediment sampling was increased during hydrologically relevant events. The main objective of this study is to explore the possibility of obtaining long and accurate time series of suspended sediment concentration in the NEAWGN. To this end, simple linear regressions between sediment concentration and turbidity are proposed. In addition, supervised learning models incorporating a larger number of predictive variables are used for the same purpose. A series of indicators are proposed to objectively characterize the intensity and timing of sampling. It was not possible to obtain a satisfactory model for estimating the concentration of suspended sediment. This would be mainly due to the large temporal variability found of the physical and mineralogical characteristics of the sediment, which would be affecting the turbidity value, independently of the sediment concentration, per se. This fact would be particularly important in small river watersheds such as those of this study, and especially if their physical conditions are spatially and temporally radically disturbed by agricultural tillage and by a constant modification of the vegetation cover, as is the case in cereal basins. Our findings suggest that better results could be obtained by including in the analysis variables such as soil texture and exported sediment texture, rainfall erosivity, and the state of vegetation cover and riparian vegetation.
  • PublicationOpen Access
    Experimental evidence that rill-bed morphology is governed by emergent nonlinear spatial dynamics
    (Springer Nature, 2022) Morgan, Savannah; Huffaker, Ray; Giménez Díaz, Rafael; Campo-Bescós, Miguel; Muñoz Carpena, Rafael; Govers, G.; Institute on Innovation and Sustainable Development in Food Chain - ISFOOD
    Past experimental work found that rill erosion occurs mainly during rill formation in response to feedback between rill-flow hydraulics and rill-bed roughness, and that this feedback mechanism shapes rill beds into a succession of step-pool units that self-regulates sediment transport capacity of established rills. The search for clear regularities in the spatial distribution of step-pool units has been stymied by experimental rill-bed profiles exhibiting irregular fluctuating patterns of qualitative behavior. We hypothesized that the succession of step-pool units is governed by nonlinear-deterministic dynamics, which would explain observed irregular fluctuations. We tested this hypothesis with nonlinear time series analysis to reverse-engineer (reconstruct) state-space dynamics from fifteen experimental rill-bed profiles analyzed in previous work. Our results support this hypothesis for rill-bed profiles generated both in a controlled lab (flume) setting and in an in-situ hillside setting. The results provide experimental evidence that rill morphology is shaped endogenously by internal nonlinear hydrologic and soil processes rather than stochastically forced; and set a benchmark guiding specification and testing of new theoretical framings of rill-bed roughness in soil-erosion modeling. Finally, we applied echo state neural network machine learning to simulate reconstructed rill-bed dynamics so that morphological development could be forecasted out-of-sample.
  • PublicationOpen Access
    Evaluation of terrestrial laser scanner and structure from motion photogrammetry techniques for quantifying soil surface roughness parameters over agricultural soils
    (Wiley, 2020) Martínez de Aguirre Escobar, Alejandro; Álvarez Mozos, Jesús; Milenković, Milutin; Pfeifer, Norbert; Giménez Díaz, Rafael; Ingeniería; Ingeniaritza
    The surface roughness of agricultural soils is mainly related to the type of tillage performed, typically consisting of oriented and random components. Traditionally, soil surface roughness (SSR) characterization has been difficult due to its high spatial variability and the sensitivity of roughness parameters to the characteristics of the instruments, including its measurement scale. Recent advances in surveying have greatly improved the spatial resolution, extent, and availability of surface elevation datasets. However, it is still unknown how new roughness measurements relates with the conventional roughness measurements such as 2D profiles acquired by laser profilometers. The objective of this study was to evaluate the suitability of Terrestrial Laser Scanner (TLS) and Structure from Motion (SfM) photogrammetry techniques for quantifying SSR over different agricultural soils. With this aim, an experiment was carried out in three plots (5 × 5 m) representing different roughness conditions, where TLS and SfM photogrammetry measurements were co‐registered with 2D profiles obtained using a laser profilometer. Differences between new and conventional roughness measurement techniques were evaluated visually and quantitatively using regression analysis and comparing the values of six different roughness parameters. TLS and SfM photogrammetry measurements were further compared by evaluating multi‐directional roughness parameters and analyzing corresponding Digital Elevation Models. The results obtained demonstrate the ability of both TLS and SfM photogrammetry techniques to measure 3D SSR over agricultural soils. However, profiles obtained with both techniques (especially SfM photogrammetry) showed a loss of high‐frequency elevation information that affected the values of some parameters (e.g. initial slope of the autocorrelation function, peak frequency and tortuosity). Nevertheless, both TLS and SfM photogrammetry provide a massive amount of 3D information that enables a detailed analysis of surface roughness, which is relevant for multiple applications, such as those focused in hydrological and soil erosion processes and microwave scattering.
  • PublicationOpen Access
    Assessment of the main factors affecting the dynamics of nutrients in two rainfed cereal watersheds
    (Elsevier, 2020) Hernández García, Iker; Merchán Elena, Daniel; Aranguren Erice, Itxaso; Casalí Sarasíbar, Javier; Giménez Díaz, Rafael; Campo-Bescós, Miguel; Valle de Lersundi, Jokin del; Ingeniaritza; Institute on Innovation and Sustainable Development in Food Chain - ISFOOD; Ingeniería
    Nutrient dynamics and factors that control nutrient exports were observed in two watersheds, namely Latxaga and La Tejería, with similar climatic and management characteristics throughout 10 years (2007–2016). Similar patterns were observed in intra-annual and inter-annual dynamics with higher NO3 − concentration and NO3 −-N yield during the humid seasons (i.e., winters and hydrological year 2013). Regarding concentration, Latxaga showed a higher decrease of nitrate due to a higher development of vegetated areas. High discharge events produced nitrate dilution due to the presence of tile-drainage at La Tejeria. At Latxaga, where tile-drainage was not observed, an increase in concentration occurred as a response to high discharge events. Comparing both watersheds, La Tejería presented ca. 73 ± 25 mg NO3 − L−1 while at Latxaga, the concentration observed was almost three times lower, with ca. 21 ± 15 mg NO3 − L−1 throughout the study period. Similar patterns were observed for the NO3 −-N yield, with 32 kg NO3 −-N ha−1 year−1 and 17 kg NO3 −-N ha−1 year−1 at La Tejería and Latxaga, respectively. Regarding phosphorous, the observed concentrations were 0.20 ± 0.72 mg PO4 3− L−1 and 0.06 ± 0.38 mg PO4 3− L−1 at La Tejería and Latxaga, respectively, with PO4 3−-P yields being 71 kg PO4 3−-P ha−1 year−1 and 33 kg PO4 3−-P ha−1 year−1. Annual phosphate-P yield distribution in both watersheds followed similar patterns to those observed for the nitrate-N yield, with higher yields in the humid season. Regarding concentration, highly erosive rainfall that occurred in summer, mobilizing sediments and probably generating desorption of phosphorous in the stream channel, increased phosphate concentration. This research adds to the knowledge base regarding the dynamics of nutrients and the controlling factors in complex agricultural systems with Mediterranean characteristics.
  • PublicationOpen Access
    Toward optimal irrigation management at the plot level: evaluation of commercial water potential sensors
    (MDPI, 2023) Campo-Bescós, Miguel; Virto Quecedo, Íñigo; Giménez Díaz, Rafael; Aldaz Lusarreta, Alaitz; Ciencias; Zientziak; Ingeniería; Ingeniaritza; Institute on Innovation and Sustainable Development in Food Chain - ISFOOD
    Proper irrigation practice consists of applying the optimum amount of water to the soil at the right time. The porous characteristics of the soil determine the capacity of the soil to absorb, infiltrate, and store water. In irrigation, it is not sufficient to only determine the water content of the soil; it is also necessary to determine the availability of water for plants: water potential. In this paper, a comprehensive laboratory evaluation—accuracy and variability—of the world’s leading commercial water potential sensors is carried out. No such comprehensive and exhaustive comparative evaluation of these devices has been carried out to date. Ten pairs of representative commercial sensors from four different families were selected according to their principle of operation (tensiometers, capacitive sensors, heat dissipation sensors, and resistance blocks). The accuracy of the readings (0 kPa–200 kPa) was determined in two soils of contrasting textures. The variability in the recordings—repeatability and reproducibility—was carried out in a homogeneous and inert material (sand) in the same suction range. The response in terms of accuracy and value dispersion of the different sensor families was different according to the suction range considered. In the suction range of agronomic interest (0–100 kPa), the heat dissipation sensor and the capacitive sensors were the most accurate. In both families, registrations could be extended up to 150–200 kPa. The scatter in the readings across the different sensors was due to approximately 80% of the repeatability or intrinsic variability in the sensor unit and 20% of the reproducibility. Some sensors would significantly improve their performance with ad hoc calibrations.
  • PublicationOpen Access
    Effects of innovative long-term soil and crop management on topsoil properties of a mediterranean soil based on detailed water retention curves
    (European Geosciences Union, 2022) Aldaz Lusarreta, Alaitz; Giménez Díaz, Rafael; Campo-Bescós, Miguel; Arregui Odériz, Luis Miguel; Virto Quecedo, Íñigo; Agronomía, Biotecnología y Alimentación; Agronomia, Bioteknologia eta Elikadura; Ciencias; Zientziak; Ingeniería; Ingeniaritza; Institute on Innovation and Sustainable Development in Food Chain - ISFOOD; Gobierno de Navarra / Nafarroako Gobernua
    The effectiveness of conservation agriculture (CA) and other soil management strategies implying a reduction of tillage has been shown to be site-dependent (crop, clime and soil), and thus any new soil and crop management should be rigorously evaluated before its implementation. Moreover, farmers are normally reluctant to abandon conventional practices if this means putting their production at risk. This study evaluates an innovative soil and crop management (including no-tillage, cover crops and organic amendments) as an alternative to conventional management for rainfed cereal cropping in a calcareous soil in a semi-arid Mediterranean climatic zone of Navarra (Spain), based on the analysis of soil water retention curves (SWRCs) and soil structure. The study was carried out in a small agricultural area in the municipality of Garínoain (Navarre, Spain) devoted to rainfed cereal cropping. No other agricultural area in the whole region of Navarre exists where soil and crop management as proposed herein is practiced. Climate is temperate Mediterranean, and the dominant soil is Fluventic Haploxerept. Within the study area there is a subarea devoted to the proposed soil and crop management (OPM treatment), while there is another subarea where the soil and crop management is conventional in the zone (CM treatment). OPM includes no-tillage (18 years continuous) after conventional tillage, crop rotation, use of cover crops and occasional application of organic amendments. CM involves continuous conventional tillage (chisel plow), mineral fertilization, no cover crops and a lower diversity of crops in the rotation. Undisturbed soil samples from the topsoil and disturbed samples from the tilled layer were collected for both systems. The undisturbed samples were used to obtain the detailed SWRCs in the low suction range using a HYPROP©device. From the SWRCs, different approaches found in the literature to evaluate soil physical quality were calculated. The pore-size distribution was also estimated from the SWRCs. Disturbed samples were used in the laboratory to assess soil structure by means of an aggregate-size fractionation and to perform complementary analysis from which other indicators related to soil functioning and agricultural sustainability were obtained. The approaches evaluated did not show clear differences between treatments. However, the differences in soil quality between the two forms of management were better observed in the pore size distributions and by the analysis of the size distribution and stability of soil aggregates. There was an overabundance of macropores under CM, while the amount of mesopores (available water) and micropores were similar in both treatments. Likewise, more stable macroaggregates were observed in OPM than in CM, as well as more organic C storage, greater microbial activity, and biomass. The proposed management system is providing good results regarding soil physical quality and contributing also to the enhancement of biodiversity, as well as to the improvement in water-use efficiency. Finally, our findings suggest that the adoption of the proposed practice would not result in a loss in yields compared to conventional management.