Person: Giménez Díaz, Rafael
Loading...
Email Address
person.page.identifierURI
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Giménez Díaz
First Name
Rafael
person.page.departamento
Ingeniería
person.page.instituteName
IS-FOOD. Research Institute on Innovation & Sustainable Development in Food Chain
ORCID
0000-0003-3210-0578
person.page.upna
6698
Name
2 results
Search Results
Now showing 1 - 2 of 2
Publication Open Access Assessing soil properties controlling interrill erosion: an empirical approach under Mediterranean conditions(Wiley, 2017) Ollobarren del Barrio, Paul; Giménez Díaz, Rafael; Campo-Bescós, Miguel; Landa Ingeniaritza eta Proiektuak; Institute on Innovation and Sustainable Development in Food Chain - ISFOOD; Proyectos e Ingeniería Rural; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaSoil erodibility is a complex phenomenon that comprises a number of different soil properties. However, most current (empirical) erodibility indices are based on only a few soil properties. A feasible soil characterization of interrill erosion (IE) prediction at large scale should be based on simple, quick and inexpensive tests to perform. The objective of this work was to identify and assess those soil properties that best reflect soil vulnerability to IE. Twenty‐three agricultural soil samples located in Spain and Italy were studied. Forty‐nine different physical and chemical soil properties that presumably underpin IE were defined. Experiments were carried out in the field (in microplots using simulated rainfall) and in the lab. The most relevant variables were detected using multivariate analysis. Six key variables were finally identified: RUSLE K factor, a granulometric/organic matter content index, exchangeable sodium percentage, shear strength, penetration resistance and permeability of soil seal. The latter is proposed as a useful technique to evaluate soil susceptibility to crusting even when the crust is not present at the time of the field survey. The selected variables represented a wide range of soil properties, and they could also be successfully applied to different soils with different characteristics than those evaluated in our experiments.Publication Open Access Assessment of soil factors controlling ephemeral gully erosion on agricultural fields(Wiley, 2017) Ollobarren del Barrio, Paul; Campo-Bescós, Miguel; Giménez Díaz, Rafael; Casalí Sarasíbar, Javier; Landa Ingeniaritza eta Proiektuak; Institute on Innovation and Sustainable Development in Food Chain - ISFOOD; Proyectos e Ingeniería Rural; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaThe soil factor is crucial in controlling and properly modeling the initiation and development of ephemeral gullies (EGs). Usually, EG initiation has been related to various soil properties (i.e. sealing, critical shear stress, moisture, texture, etc.); meanwhile, the total growth of each EG (erosion rate) has been linked with proper soil erodibility. But, despite the studies to determine the influence of soil erodibility on (ephemeral) gully erosion, a universal approach is still lacking. This is due to the complex relationship and interactions between soil properties and the erosive process. A feasible soil characterization of EG erosion prediction on a large scale should be based on simple, quick and inexpensive tests to perform. The objective of this study was to identify and assess the soil properties – easily and quickly to determine – which best reflect soil erodibility on EG erosion. Forty‐nine different physical–chemical soil properties that may participate in establishing soil erodibility were determined on agricultural soils affected by the formation of EGs in Spain and Italy. Experiments were conducted in the laboratory and in the field (in the vicinity of the erosion paths). Because of its importance in controlling EG erosion, five variables related to antecedent moisture prior to the event that generated the gullies and two properties related to landscape topography were obtained for each situation. The most relevant variables were detected using multivariate analysis. The results defined 13 key variables: water content before the initiation of EGs, organic matter content, cation exchange capacity, relative sealing index, two granulometric and organic matter indices, seal permeability, aggregates stability (three index), crust penetration resistance, shear strength and an erodibility index obtained from the Jet Test erosion apparatus. The latter is proposed as a useful technique to evaluate and predict soil loss caused by EG erosion.