Person: Giménez Díaz, Rafael
Loading...
Email Address
person.page.identifierURI
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Giménez Díaz
First Name
Rafael
person.page.departamento
Ingeniería
person.page.instituteName
IS-FOOD. Research Institute on Innovation & Sustainable Development in Food Chain
ORCID
0000-0003-3210-0578
person.page.upna
6698
Name
26 results
Search Results
Now showing 1 - 10 of 26
Publication Open Access Effect of topography on retreat rate of different gully headcuts in Bardenas Reales area (Navarre, Spain)(Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa, 2007) Campo-Bescós, Miguel; Álvarez Mozos, Jesús; Casalí Sarasíbar, Javier; Giménez Díaz, Rafael; Proyectos e Ingeniería Rural; Landa Ingeniaritza eta ProiektuakIn Northeast Spain, gullying is a widespread phenomenon. This type of erosion is especially intense in Bardenas Reales (Navarre) where at least two major typical kinds of gully headcut are present. A first group developed in soil material (named, conventional gully headcut), and second group of gully headcut with a sandstone layer as a top horizon (named, sandstone gully headcut). In addition, within the former group, we can distinguish a subgroup of gully headcuts developed in soils particularly prone to piping and tunnelling due to the dispersive condition of the materials (named piping associated gully headcut). In this situation, a question arises: to what extent simple topographic parameters account for the retreat rate of the different kind of gully headcuts observed in the region of Bardenas Reales? The aim of this study was to investigate and gain insight in this issue.Publication Open Access Hydrological effects of the sediments deposited off a hillslope affected by rill erosion: project outlines and preliminary results(Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa, 2007) Giménez Díaz, Rafael; Casalí Sarasíbar, Javier; Campo-Bescós, Miguel; Proyectos e Ingeniería Rural; Landa Ingeniaritza eta ProiektuakThe main objectives of this project are (i) to evaluate the sedimentation rate generated by rill erosion in a hillslope and the granulometric characteristics of the sediment deposited off this hillslope, and (ii) to determine the incidence of this sediment on the hydrological properties of the sedimentation area. In addition, an extra aim is to gain insight into the spatial and temporal evolution of a rill network under field condition.Publication Open Access Progress in gully erosion research: IV International Symposium on Gully Erosion(Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa, 2007) Casalí Sarasíbar, Javier; Giménez Díaz, Rafael; Proyectos e Ingeniería Rural; Landa Ingeniaritza eta ProiektuakThe classic forms of water erosion of the soil comprise sheet, rill, and gully erosion. According to the concept most generalized, in sheet erosion, thin layers of material are uniformly removed from the soil surface due to the action of an overland flow, in a homogeneous manner, over the area affected. This results in a normally very gradual and inappreciable loss of soil. However, in rill and gully erosion, the soil loss is caused by the intense action of a concentrated flow, which thus triggers the formation of small or large channels, i.e. rills or gullies, although the mechanisms implicated in either form of concentrated flow erosion are not identical. One of the main differences probably lies in the (much) greater interrelation between the roughness of the channel bed and the hydraulics of the water flow observed in a eroded rill, with respect to what occurs in a typical gully. So, the latter, as a physical process, deserves a special and specific study. Gully erosion, of world-wide importance, is catalogued by some of the principal centres devoted to soil resource conservation as being the foremost problem to be solved. As it is one of the most serious forms of water erosion, this phenomenon is capable of generating major soil losses even though it covers limited land surfaces. Additionally, the damage caused by this type of erosion frequently spreads beyond the area directly affected, i.e. through the siltation of lakes and reservoirs due to the large amounts of sediments it originates. Nevertheless, gully erosion has not received the attention that it warrants from the scientific community. For instance, a rapid search through any important virtual library shows that only less than 10% of soil erosion studies published up to now in international scientific journals deal directly and specifically with gully erosion. More research and surveys are required in order to obtain a better understanding of the physical mechanisms involved in this type of erosion, with the ultimate aim of developing accurate prediction algorithms and efficient control and damage prevention systems. In fact, there are so many unanswered questions on this important environment topic that scientists all over the world have been holding periodic meetings, in which the latest knowledge and advances in the study of gully erosion have been expounded. The first of these meetings was held in Leuven (Belgium) in 2000, the second in Sicuani (China) in 2002 and the third in Oxford, Mississippi (U.S.A.) in 2004. On that last occasion, the participants proposed that Pamplona (Spain) should be the seat of the following meeting, to be held in September 2007. This book contains the abstracts both from the key speeches and from the contributions presented in the IV International Symposium on Gully Erosion held in Pamplona, in September, 2007.Publication Open Access Influence of surface roughness sample size for C-band SAR backscatter applications on agricultural soils(IEEE, 2017) Martínez de Aguirre Escobar, Alejandro; Álvarez Mozos, Jesús; Lievens, Hans; Verhoest, Niko E. C.; Giménez Díaz, Rafael; Landa Ingeniaritza eta Proiektuak; Institute on Innovation and Sustainable Development in Food Chain - ISFOOD; Proyectos e Ingeniería RuralSoil surface roughness determines the backscatter coefficient observed by radar sensors. The objective of this letter was to determine the surface roughness sample size required in synthetic aperture radar applications and to provide some guidelines on roughness characterization in agricultural soils for these applications. With this aim, a data set consisting of ten ENVISAT/ASAR observations acquired coinciding with soil moisture and surface roughness surveys has been processed. The analysis consisted of: 1) assessing the accuracies of roughness parameters s and l depending on the number of 1-m-long profiles measured per field; 2) computing the correlation of field average roughness parameters with backscatter observations; and 3) evaluating the goodness of fit of three widely used backscatter models, i.e., integral equation model (IEM), geometrical optics model (GOM), and Oh model. The results obtained illustrate a different behavior of the two roughness parameters. A minimum of 10-15 profiles can be considered sufficient for an accurate determination of s, while 20 profiles might still be not enough for accurately estimating l. The correlation analysis revealed a clear sensitivity of backscatter to surface roughness. For sample sizes >15 profiles, R values were as high as 0.6 for s and ~0.35 for l, while for smaller sample sizes R values dropped significantly. Similar results were obtained when applying the backscatter models, with enhanced model precision for larger sample sizes. However, IEM and GOM results were poorer than those obtained with the Oh model and more affected by lower sample sizes, probably due to larger uncertainly of l.Publication Open Access Assessment of soil factors controlling ephemeral gully erosion on agricultural fields(Wiley, 2017) Ollobarren del Barrio, Paul; Campo-Bescós, Miguel; Giménez Díaz, Rafael; Casalí Sarasíbar, Javier; Landa Ingeniaritza eta Proiektuak; Institute on Innovation and Sustainable Development in Food Chain - ISFOOD; Proyectos e Ingeniería Rural; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaThe soil factor is crucial in controlling and properly modeling the initiation and development of ephemeral gullies (EGs). Usually, EG initiation has been related to various soil properties (i.e. sealing, critical shear stress, moisture, texture, etc.); meanwhile, the total growth of each EG (erosion rate) has been linked with proper soil erodibility. But, despite the studies to determine the influence of soil erodibility on (ephemeral) gully erosion, a universal approach is still lacking. This is due to the complex relationship and interactions between soil properties and the erosive process. A feasible soil characterization of EG erosion prediction on a large scale should be based on simple, quick and inexpensive tests to perform. The objective of this study was to identify and assess the soil properties – easily and quickly to determine – which best reflect soil erodibility on EG erosion. Forty‐nine different physical–chemical soil properties that may participate in establishing soil erodibility were determined on agricultural soils affected by the formation of EGs in Spain and Italy. Experiments were conducted in the laboratory and in the field (in the vicinity of the erosion paths). Because of its importance in controlling EG erosion, five variables related to antecedent moisture prior to the event that generated the gullies and two properties related to landscape topography were obtained for each situation. The most relevant variables were detected using multivariate analysis. The results defined 13 key variables: water content before the initiation of EGs, organic matter content, cation exchange capacity, relative sealing index, two granulometric and organic matter indices, seal permeability, aggregates stability (three index), crust penetration resistance, shear strength and an erodibility index obtained from the Jet Test erosion apparatus. The latter is proposed as a useful technique to evaluate and predict soil loss caused by EG erosion.Publication Open Access In-situ assessment of the spatial arrangement of step-pool units on eroded rills(wiley, 2019) Govers, G.; Campo-Bescós, Miguel; Zubieta Laseca, Elena; Giménez Díaz, Rafael; Ingeniaritza; Institute on Innovation and Sustainable Development in Food Chain - ISFOOD; IngenieríaPublication Open Access Runoff, nutrients, sediment and salt yields in an irrigated watershed in southern Navarre (Spain)(Elsevier, 2018) Merchán Elena, Daniel; Casalí Sarasíbar, Javier; Valle de Lersundi, Jokin del; Campo-Bescós, Miguel; Giménez Díaz, Rafael; Preciado, Beatriz; Lafarga, Alberto; Landa Ingeniaritza eta Proiektuak; Institute on Innovation and Sustainable Development in Food Chain - ISFOOD; Proyectos e Ingeniería RuralThe environmental impact of irrigated agriculture on water quality was assessed in Landazuria watershed (Navarre, northeast Spain), a 479.5 ha watershed with 53% of irrigated agricultural land. In the framework of a long-term monitoring program, precipitation and discharge were measured at 10-min intervals and compound daily water samples were collected during the agricultural years (September to August) 2007–2016, and analysed for nitrate (NO3−), phosphate (PO43−), sediment and total dissolved solids (TDS) concentrations. Typical agricultural management (including crop surfaces, irrigation and fertilization rates) was obtained from inquiries to farmers. Concentration and yield of the studied variables presented a high degree of variation, both intra- and inter-annual. Median concentration for the entire study period were 185, <0.05, 31 and 2284 mg L−1 for NO3−, PO43−, sediment and TDS, respectively. NO3−-N and PO43−-P yields averaged 74 and 0.04 kg ha−1 year−1, respectively. NO3 −-N yield was higher than in other agricultural land uses in Navarre and in the order of magnitude of other irrigated areas in the Middle Ebro Valley. PO43−-P yield was in the same order of magnitude than in rainfed watersheds in Navarre but lower than in intensively grazed watersheds. Sediment yield was extremely variable, averaging 360 kg ha−1 year−1, with 44% of the total measured load recorded in a few days. It was in the lower range of those measured in Navarre for rainfed agriculture and similar to those estimated in other irrigated areas of the Middle Ebro River. TDS concentration presented a significant decreasing trend since available salts were being washed out, while TDS yield averaged 1.8 Mg ha−1 year−1. Long-term monitoring of irrigated areas is required to understand pollution processes in these agroecosystems and to adequately characterize the environmental impact of current agricultural practices on water quality, in order to implement, and adequately assess, measures to reduce agricultural pollution.Publication Open Access Evaluation of terrestrial laser scanner and structure from motion photogrammetry techniques for quantifying soil surface roughness parameters over agricultural soils(Wiley, 2020) Martínez de Aguirre Escobar, Alejandro; Álvarez Mozos, Jesús; Milenković, Milutin; Pfeifer, Norbert; Giménez Díaz, Rafael; Ingeniería; IngeniaritzaThe surface roughness of agricultural soils is mainly related to the type of tillage performed, typically consisting of oriented and random components. Traditionally, soil surface roughness (SSR) characterization has been difficult due to its high spatial variability and the sensitivity of roughness parameters to the characteristics of the instruments, including its measurement scale. Recent advances in surveying have greatly improved the spatial resolution, extent, and availability of surface elevation datasets. However, it is still unknown how new roughness measurements relates with the conventional roughness measurements such as 2D profiles acquired by laser profilometers. The objective of this study was to evaluate the suitability of Terrestrial Laser Scanner (TLS) and Structure from Motion (SfM) photogrammetry techniques for quantifying SSR over different agricultural soils. With this aim, an experiment was carried out in three plots (5 × 5 m) representing different roughness conditions, where TLS and SfM photogrammetry measurements were co‐registered with 2D profiles obtained using a laser profilometer. Differences between new and conventional roughness measurement techniques were evaluated visually and quantitatively using regression analysis and comparing the values of six different roughness parameters. TLS and SfM photogrammetry measurements were further compared by evaluating multi‐directional roughness parameters and analyzing corresponding Digital Elevation Models. The results obtained demonstrate the ability of both TLS and SfM photogrammetry techniques to measure 3D SSR over agricultural soils. However, profiles obtained with both techniques (especially SfM photogrammetry) showed a loss of high‐frequency elevation information that affected the values of some parameters (e.g. initial slope of the autocorrelation function, peak frequency and tortuosity). Nevertheless, both TLS and SfM photogrammetry provide a massive amount of 3D information that enables a detailed analysis of surface roughness, which is relevant for multiple applications, such as those focused in hydrological and soil erosion processes and microwave scattering.Publication Open Access Challenges and progresses in the detailed estimation of sediment export in agricultural watersheds in Navarra (Spain) after two decades of experience(Elsevier, 2023) Barberena Ruiz, Íñigo; Luquin Oroz, Eduardo Adrián; Campo-Bescós, Miguel; Eslava, Javier; Giménez Díaz, Rafael; Casalí Sarasíbar, Javier; Ingeniería; Ingeniaritza; Institute on Innovation and Sustainable Development in Food Chain - ISFOODSoil erosion is a very serious environmental problem worldwide, with agriculture considered the main source of sediment in inland waters. In order to determine the extent and importance of soil erosion in the Spanish region of Navarra, in 1995 the Government of Navarra established the Network of Experimental Agricultural Watersheds (NEAWGN), which consists of five small watersheds representative of local conditions. In each watershed, key hydrometeorological variables, including turbidity, were recorded every 10 min, and daily samples were taken to determine suspended sediment concentration. In 2006, the frequency of suspended sediment sampling was increased during hydrologically relevant events. The main objective of this study is to explore the possibility of obtaining long and accurate time series of suspended sediment concentration in the NEAWGN. To this end, simple linear regressions between sediment concentration and turbidity are proposed. In addition, supervised learning models incorporating a larger number of predictive variables are used for the same purpose. A series of indicators are proposed to objectively characterize the intensity and timing of sampling. It was not possible to obtain a satisfactory model for estimating the concentration of suspended sediment. This would be mainly due to the large temporal variability found of the physical and mineralogical characteristics of the sediment, which would be affecting the turbidity value, independently of the sediment concentration, per se. This fact would be particularly important in small river watersheds such as those of this study, and especially if their physical conditions are spatially and temporally radically disturbed by agricultural tillage and by a constant modification of the vegetation cover, as is the case in cereal basins. Our findings suggest that better results could be obtained by including in the analysis variables such as soil texture and exported sediment texture, rainfall erosivity, and the state of vegetation cover and riparian vegetation.Publication Open Access Gully geometry: what are we measuring?(European Geosciences Union, 2015) Casalí Sarasíbar, Javier; Giménez Díaz, Rafael; Campo-Bescós, Miguel; Proyectos e Ingeniería Rural; Landa Ingeniaritza eta ProiektuakMuch of the research on (ephemeral) gully erosion comprises the determination of the geometry of these eroded channels, especially their width and depth. This is not a simple task due to uncertainty generated by the wide range of variability in gully cross section shapes found in the field. However, in the literature, this uncertainty is not recognized so that no criteria for their measurement are indicated. The aim of this work is to make researchers aware of the ambiguity that arises when characterizing the geometry of an ephemeral gully and similar eroded channels. In addition, a measurement protocol is proposed with the ultimate goal of pooling criteria in future works. It is suggested that the geometry of a gully could be characterized through its mean equivalent width and mean equivalent depth, which, together with its length, define an “equivalent prismatic gully” (EPG). The latter would facilitate the comparison between different gullies.
- «
- 1 (current)
- 2
- 3
- »