Plaza Puértolas, Aitor

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Plaza Puértolas

First Name

Aitor

person.page.departamento

Ingeniería

person.page.instituteName

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 10 of 10
  • PublicationOpen Access
    Mechanical sensitivity analysis of strain gauge configurations in the main shaft of wind turbines
    (IOP Publishing, 2022) Bacaicoa Díaz, Julen; Iriarte Goñi, Xabier; Aginaga García, Jokin; Plaza Puértolas, Aitor; Ingeniaritza; Institute of Smart Cities - ISC; Ingeniería
    Wind turbines are reaching their remaining useful life, thus it is important to guarantee the well status of its components. A common way to check the status is to measure the loads on the Low Speed Shaft with strain gauges, but not always are bonded perfectly. In this work a sensitivity analysis of strain gauge con gurations is carried out, where the infuence of geometric and material parameters, and misplacement and misalignment parameters is analyzed. An analytical model for a single gauge was developed, obtaining a relation between the exerted loads and the strain measured by the strain gauge. By means of Taylor approximations the estimated loads were approached in order to have into account the in uence of the uncertainty of parameters. Results shown that the sensitivities with respect to the geometric and material parameters did not depend on the secondary loads while in the sensitivities with respect to the gauge bonding parameters the cross-talk e ect was present. In order to obtain realistic numerical results, a horizontal-axis NREL 5-MW wind turbine was simulated in OpenFAST with two wind-speed scenarios. The uncertainty of the estimated loads by the strain gauge con gurations was calculated.
  • PublicationOpen Access
    Ultra-low frequency multidirectional harvester for wind turbines
    (Elsevier, 2023) Castellano Aldave, Jesús Carlos; Carlosena García, Alfonso; Iriarte Goñi, Xabier; Plaza Puértolas, Aitor; Ingeniería; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute of Smart Cities - ISC; Ingeniaritza; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    In this paper we propose, and demonstrate through a prototype, a completely novel device able to harvest mechanical energy from the multidirectional vibrations in a wind turbine, and convert it into electrical, to power autonomous sensors. The application is very challenging since vibrations are of ultra-low frequency, well below 1 Hz, with accelerations of tenths of cm/s2 (0.01 g), and the device must capture energy from the movement in any direction. According to our experiments, the device is capable to generate average powers around the milliwatt in the operation conditions of a wind turbine, which are enough for some very-low power sensor nodes, or at least to considerably extend the life-time of batteries. The device is based on the principle of moving (inertial) masses comprised of magnets in Hallbach arrays interacting with coils, and can work for movements on any direction of a plane. To the best of our knowledge, this is the first device specifically proposed for wind turbines and one of the few that work in such low frequencies, and capture energy from movements on any direction on a plane. Only three harvesters proposed in the literature, intended for distinct applications, can work at such low frequencies, and our device exhibits a better efficiency. Though comparisons with harvesters working in different contexts and, even using different conversion principles, is not completely fair, we make in this paper a comparison to the closest ones, resorting to two different figures of merit.
  • PublicationOpen Access
    Along-the-path exponential integration for Floquet stability analysis of wind turbines
    (IOP Publishing, 2022) Ros Ganuza, Javier; Olcoz Alonso, Álvaro; Plaza Puértolas, Aitor; Zientziak; Institute of Smart Cities - ISC; Ciencias; Gobierno de Navarra / Nafarroako Gobernua
    Traditionally, stability assessment of wind turbines has been performed by eigenanalysis of the azimuthally-averaged linearized system after applying the Multi-Blade Coordinate (MBC) transformation. However, due to internal or external anisotropy, the MBC transform does not produce an exact Linear Time-Invariant (LTI) system, and a Floquet analysis is required to capture the influence of all periodic terms, leading to a more accurate stability analysis. In this paper exponential integration methods that use system linearizations at different blade azimuth positions are used to integrate the perturbed system state and compute the Floquet monodromy matrix. The proposed procedure is assessed for a simple 6 DOF wind turbine model and a more complex aeroelastic model of a 5MW onshore wind turbine. The defined along-the-path or moving-point exponential integrator is found to be the suitable in order to perform a Floquet stability analysis even using a coarse linearization grid.
  • PublicationOpen Access
    Dataset for the identification of a ultra-low frequency multidirectional energy harvester for wind turbines
    (Elsevier, 2024-11-20) Bacaicoa Díaz, Julen; Hualde Otamendi, Mikel; Merino Olagüe, Mikel; Plaza Puértolas, Aitor; Iriarte Goñi, Xabier; Castellano Aldave, Jesús Carlos; Carlosena García, Alfonso; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Ingeniería; Ingeniaritza; Institute of Smart Cities - ISC; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    This paper presents a publicly available dataset designed to support the identification (characterization) and performance optimization of an ultra-low-frequency multidirectional vibration energy harvester. The dataset includes detailed measurements from experiments performed to fully characterize its dynamic behaviour. The experimental data encompasses both input (acceleration)-output (energy) relationships, as well as internal system dynamics, measured using a synchronized image processing and signal acquisition system. In addition to the raw input-output data, the dataset also provides post-processed information, such as the angular positions of the moving masses, their velocities and accelerations, derived from recorded high-speed videos at 240 Hz. The dataset also includes the measured power output generated in the coils. This dataset is intended to enable further research on vibration energy harvesters by providing experimental data for identification, model validation, and performance optimization, particularly in the context of energy harvesting in low-frequency and multidirectional environments, such as those encountered in wind turbines.
  • PublicationOpen Access
    Low-frequency electromagnetic harvester for wind turbine vibrations
    (Elsevier, 2024) Castellano Aldave, Jesús Carlos; Plaza Puértolas, Aitor; Iriarte Goñi, Xabier; Carlosena García, Alfonso; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Institute of Smart Cities - ISC; Ingeniería; Ingeniaritza; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    In this paper we describe and fully characterize a novel vibration harvester intended to harness energy from the vibration of a wind turbine (WT), to potentially supply power to sensing nodes oriented to structural health monitoring (SHM). The harvester is based on electromagnetic conversion (EM) and can work with vibrations of ultra-low frequencies in any direction of a plane. The harvester bases on a first prototype already disclosed by the authors, but in this paper, we develop an accurate model parameterized by a combination of physical parameters and others related to the geometry of the device. The model allows predicting not only the power generation capabilities, but also the kinematic behaviour of the harvester. Model parameters are estimated by an identification procedure and validated experimentally. Last, the harvester is tested in real conditions on a wind turbine.
  • PublicationEmbargo
    Modal frequency and damping estimation of wind turbines: analysis of a wind farm
    (Springer, 2024-06-22) Legaz Catena, Asier; Zivanovic, Miroslav; Iriarte Goñi, Xabier; Plaza Puértolas, Aitor; Carlosena García, Alfonso; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Institute of Smart Cities - ISC; Ingeniería; Ingeniaritza
    In this paper, we present an in-depth analysis carried out on several units of the same Wind Turbine (WT) model installed in a wind farm. We have collected simultaneous data under several different operating conditions ranging from the idling state to nominal power close to cut-out. Both frequency and damping parameters have been estimated for the first and second Fore-Aft (FA) and Side-Side (SS) tower modes. As far as we know, there are no previous publications combining data from so many turbines, operating conditions, and for a time period spanning several months. We have made use of a novel strategy to isolate the modes and minimize the influence of harmonics, using an algorithm previously proposed by the authors. The main conclusion is that estimated modal frequencies allow for a clear discrimination between turbines, whereas damping ratios, subjected to much wider deviations, do not seem to be very discriminant. We show here results for only one operating mode (nominal power), for which the method has been tuned. The analysis of other operating modes and longer periods, now under consideration, will allow for more conclusive results.
  • PublicationOpen Access
    A directivity correction for accurate semi-empirical wind turbine noise prediction
    (IOP Publishing, 2024) Saldaña Barroso, Oier; Rautmann, C.; Plaza Puértolas, Aitor; Ingeniería; Ingeniaritza
    Public acceptance of wind farms is a significant challenge in the development of wind energy. The acoustic impact generated by wind turbines is a common concern among local residents. The primary noise source in wind turbines is generated by aerodynamics. Atmospheric turbulence reaching the blade leading edge or turbulent boundary layer passing the trailing edge produce the main aeroacoustic sources. The noise generated by these mechanisms is commonly predicted by means of semi-empirical models, which do not demonstrate great reliability when compared to acoustic measurements. This paper presents a correction to the directivity of airfoil noise radiation, resulting in improved sound pressure levels on the ground plane surrounding a wind turbine. This improvement is achieved without requiring any additional computational effort. The sound pressure levels perceived on the ground plane are known to have asymmetrical shape. Maximum noise levels correspond to observers directly in the upwind and downwind locations, whereas the minimum levels belong to the positions close to the rotor plane. Said asymmetrical shape is not represented in the semi-empirical models. The proposed correction takes into consideration the airfoil thickness in the radiation directivity equations, resulting in the expected asymmetrical shape of noise footprints on the ground plane around a wind turbine. The correction was found to not affect the accuracy of the spectrum predicted by the semi-empirical models when compared to dedicated field measurements under the standard IEC 61400-11 procedure. When implementing the proposed correction, the virtual NREL 5 MW wind turbine's published noise footprints, which were originally calculated using computationally expensive methods, are accurately reproduced.
  • PublicationOpen Access
    Comprehensive analysis of rotor edgewise whirling mode interaction with rotor speed harmonics
    (IOP Publishing, 2024) Torres Elizondo, Antonio; Gil Soto, Javier; Plaza Puértolas, Aitor; Aginaga García, Jokin; Ingeniería; Ingeniaritza; Institute of Smart Cities - ISC
    This paper presents a model that investigates the interaction between rotor edgewise whirling modes and rotor speed harmonics in wind turbines. The model is based on kinematic and dynamic principles, with a focus on the multi-blade coordinate transformation, which is critical for simulating the behaviour of the rotor whirling modes in wind turbines. The research has two objectives: to investigate the interaction between the rotor edgewise whirling modes and the rotor speed harmonics, and to provide clearer graphs that explain the complex nature of this non-intuitive rotor dynamics. The paper concludes by highlighting the practical implications of the research findings, in particular the effectiveness of visualisation techniques in identifying and explaining unexpected interactions.
  • PublicationOpen Access
    Comprehensive characterisation of a low-frequency-vibration energy harvester
    (MDPI, 2024) Plaza Puértolas, Aitor; Iriarte Goñi, Xabier; Castellano Aldave, Jesús Carlos; Carlosena García, Alfonso; Ingeniería; Ingeniaritza; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Institute of Smart Cities - ISC
    In this paper, we describe a measurement procedure to fully characterise a novel vibration energy harvester operating in the ultra-low-frequency range. The procedure, which is more thorough than those usually found in the literature, comprises three main stages: modelling, experimental characterisation and parameter identification. Modelling is accomplished in two alternative ways, a physical model (white box) and a mixed one (black box), which model the magnetic interaction via Fourier series. The experimental measurements include not only the input (acceleration)–output (energy) response but also the (internal) dynamic behaviour of the system, making use of a synchronised image processing and signal acquisition system. The identification procedure, based on maximum likelihood, estimates all the relevant parameters to characterise the system to simulate its behaviour and helps to optimise its performance. While the method is custom-designed for a particular harvester, the comprehensive approach and most of its procedures can be applied to similar harvesters.
  • PublicationOpen Access
    Computational investigation of the effect of the trailing edge thickness on the wind turbine performance
    (IOP Publishing, 2024) Echenique, Daniel; Plaza Puértolas, Aitor; Gutiérrez Amo, Rubén; Ingeniería; Ingeniaritza
    Trailing edge (TE) thickness is a manufacturing constraint in blade design, especially for airfoils with a sharp TE. To achieve a specific TE thickness, blade geometry is often modified during the design process, typically in the outer zone of the blade where the airfoil's TE is thinner. This area has a significant impact on energy production and loads. Quantifying the effect of TE thickness modifications is crucial for making informed design decisions. Therefore, this study quantifies and compares the impact of linear and polynomial geometry modifications on airfoil aerodynamics and turbine performance. Xfoil and OpenFAST were used to calculate these performance variations in the well-known NREL 5 MW wind turbine. The TE thickness of the model was modified to meet various manufacturing constraints, ranging from no restriction to a limit of 12mm TE thickness. In terms of the aerodynamic behavior of the airfoils, the maximum efficiency of airfoils with low relative thickness decreases as the TE thickness increases. Annual Energy Production shows a reduction of up to 0.42% for the worst case, while blade root loads increase by up to 20%. For low relative thickness airfoils, the linear method has proven to be a better option with less impact on performance.