López-Amo Sáinz, Manuel
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
López-Amo Sáinz
First Name
Manuel
person.page.departamento
Ingeniería Eléctrica, Electrónica y de Comunicación
person.page.instituteName
ISC. Institute of Smart Cities
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
13 results
Search Results
Now showing 1 - 10 of 13
Publication Open Access 250 km ultra long remote sensor system based on a fiber loop mirror interrogated by an OTDR(Optical Society of America, 2011) Bravo Acha, Mikel; Baptista, José Manuel; Santos, José Luís; López-Amo Sáinz, Manuel; Frazão, Orlando; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta ElektronikoaA 253 km ultra long remote displacement sensor system based on a fiber loop mirror interrogated by a commercial OTDR is proposed and experimentally demonstrated. The use of a fiber loop mirror increases the signal to noise ratio allowing the system to interrogate sensors placed 253 km away from the monitoring system without using any optical amplification. The displacement sensor was based on a long period grating spliced inside of the loop mirror, which modifies the mirror reflectivity accordingly to the applied displacement.Publication Open Access Frequency modulated continuous wave system for optical fiber intensity sensors with optical amplification(IEEE, 2009) Pérez Herrera, Rosa Ana; Frazão, Orlando; Santos, José Luís; Araújo, Francisco Moita; Ferreira, Luis Alberto; Baptista, José Manuel; López-Amo Sáinz, Manuel; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta ElektronikoaWe report on the use of erbium doped fiber (EDF) amplification to enhance a frequency modulated continuous wave (FMCW) technique for referencing optical intensity sensors located between two Bragg grating structures. The experiment combines the concept of FMCW with the spectrally selective mirror properties of Bragg gratings to interrogate with referencing properties intensity based sensors. The interrogation system without amplification yields a sensor resolution of around 0.078 dB. When the EDF amplifier is introduced into the experimental set up, the sensor sensitivity does not change, but the signal-to-noise ratio is improved, resulting into an enhanced resolution of 0.025 dB. We also obtain a remote sensing operation at a location of 50 km, showing the feasibility of this configuration to be used as a remote sensing application.Publication Open Access Fiber cavity ring down and gain amplification effect(Springer Nature, 2016) Silva, Susana; Magalhães, Regina; Pérez Herrera, Rosa Ana; López-Amo Sáinz, Manuel; Marques, M. B.; Frazão, Orlando; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta ElektronikoaThe effect of an erbium-doped fiber amplifier (EDFA) placed inside the fiber ring of a cavity ring down (CRD) configuration is studied. The limitations and advantages of this configuration are discussed, and the study of the ring-down time as a function of the current applied and gain to the EDFA is also presented. In this case, the power fluctuations in the output signal are strongly dependent on the cavity ring-down time with the EDFA gain.Publication Open Access Control of the strain sensitivity using a suspended core photonic crystal fiber sensing head(SPIE, 2014-06-02) Rota Rodrigo, Sergio; López-Amo Sáinz, Manuel; Kobelke, J.; Schuster, K.; Santos, José Luís; Frazão, Orlando; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta ElektronikoaIn this work a strain sensor based on a suspended core fiber is proposed. The sensor comprises a suspended core PCF between SMFs and is based on the multimode interference generated in these transitions. A strain sensitivity study for different sensing heads and stage separation lengths was carried out showing a sensitivity of -2.42 pm/με for the best case. Also the sensing head was tested for curvature and temperature, showing in the first case that it is insensitive to curvature effects, and secondly, that for small sensor lengths it was insensitive to temperature variations.Publication Open Access Experimental and numerical characterization of a hybrid Fabry-Perot cavity for temperature sensing(MDPI, 2015) López Aldaba, Aitor; Rodrigues Pinto, Ana Margarida; López-Amo Sáinz, Manuel; Frazão, Orlando; Santos, José Luís; Baptista, José Manuel; Baierl, Hardy; Auguste, Jean-Louis; Jamier, Raphael; Roy, Philippe; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta ElektronikoaA hybrid Fabry-Pérot cavity sensing head based on a four-bridge microstructured fiber is characterized for temperature sensing. The characterization of this cavity is performed numerically and experimentally in the L-band. The sensing head output signal presents a linear variation with temperature changes, showing a sensitivity of 12.5 pm/°C. Moreover, this Fabry-Pérot cavity exhibits good sensitivity to polarization changes and high stability over time.Publication Open Access Multiwavelength Raman fiber lasers using Hi-Bi photonic crystal fiber loop mirrors combined with random cavities(IEEE / OSA, 2011) Rodrigues Pinto, Ana Margarida; Frazão, Orlando; Santos, José Luís; López-Amo Sáinz, Manuel; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta ElektronikoaDifferent multiwavelength Raman fiber lasers based on a hybrid cavity set-up are proposed. The lasing schemes are based in highly birefringent photonic crystal fiber loop mirrors combined with random cavities. The Hi-Bi PCF loop mirrors are characterized by an interferometric output; whereas the random mirrors are created by cooperative Rayleigh scattering due to Raman gain. This configuration allows suppression of Rayleigh associated noise growth, while taking advantage of it as an active part of the laser cavity, enhancing the achievable gain. The proposed fiber lasers present stable operation at room temperature although different output maxima and shapes depending on the fiber loop mirror/random mirror combination.Publication Open Access Simultaneous strain and temperature measure based on a single suspended core photonic crystal fiber(SPIE, 2014-06-02) Rota Rodrigo, Sergio; López-Amo Sáinz, Manuel; Kobelke, J.; Schuster, K.; Santos, José Luís; Frazão, Orlando; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta ElektronikoaIn this work a simultaneous strain and temperature sensor based on a suspended core fiber is proposed. The sensor comprises a 3mm suspended core PCF between SMFs and is based on the combination of two multimodal interferences with different frequency fringe patterns. The interference of the both signal has different sensitivity responses to strain and temperature. Thought a low-pass frequency filtering of the detected spectrum, the wavelength shift of the two interferences can be measured allowing the discrimination of strain and temperature simultaneously. The resolutions of this sensor are 0.45 ºC and 4.02 με.Publication Open Access Micro-displacement sensor based on a hollow-core photonic crystal fiber(MDPI, 2012) Rodrigues Pinto, Ana Margarida; López-Amo Sáinz, Manuel; Baptista, José Manuel; Santos, José Luís; Frazão, Orlando; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta ElektronikoaA sensing head based on a hollow-core photonic crystal fiber for in-reflection measurement of micro-displacements is presented. The sensing structure takes advantage of the multimodal behavior of a short segment of hollow-core photonic crystal fiber in-reflection, being spliced to a single mode fiber at its other end. A modal interferometer is obtained when the sensing head is close to a mirror, through which displacement is measured.Publication Open Access Multiplexing optical fiber Fabry-Perot interferometers based on air-microcavities(SPIE, 2019) Pérez Herrera, Rosa Ana; Novais, Susana; Bravo Acha, Mikel; Leandro González, Daniel; Silva, Susana; Frazão, Orlando; López-Amo Sáinz, Manuel; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de ComunicaciónIn this work we demonstrate the multiplexing capability of new optical fiber Fabry-Perot interferometers based on airmicrocavities using a commercial FBG interrogator. Three optimized air-microcavity interferometer sensors have been multiplexed in a single network and have been monitored using the commercial FBGs interrogator in combination with FFT calculations. Results show a sensitivity of 2.18 π rad/mε and a crosstalk-free operation.Publication Open Access Characterization of a hybrid Fabry-Pérot Cavity based on a four-bridge double-Y-shape-core microstructured fiber(SPIE, 2014-06-02) Rodrigues Pinto, Ana Margarida; López Aldaba, Aitor; López-Amo Sáinz, Manuel; Frazão, Orlando; Santos, José Luís; Baptista, José Manuel; Baierl, Hardy; Auguste, Jean-Louis; Jamier, Raphael; Roy, Philippe; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Institute of Smart Cities - ISCIn this work, a hybrid Fabry-Perot interferometer based on a novel four-bridge microstructured fiber is presented and characterized. The characterization of this cavity is performed in the L-band using two different instruments: an optical spectrum analyzer and an optical backscatter reflectometer. The Fabry-Perot output signal presents linear variation with temperature changes (sensitivity 9.8-11.9 pm/ºC), variation with the polarization states of light and high stability.